PlayStation™ Optimisation

Hints and tips for improving
the speed of your <=
programs. PlayStation

COMPUTER
ENTERTAINMENT

Allan Murphy. SCEE.

O Introduction

CPU Overview
The gcc Compller
What the compiler generates

| Cache Optimisation
D Cache Optimisation
Code Layout
Miscellaneous

PlayStation™ Optimisation.

O CPU Speed

General
R3000A derivative
33.8688 Mhz clock

132 Mbyte/sec theoretical DMA speed
Cut down coprocessor 0

le no MMU

Coprocessor 2 is GTE 3D chip

CPU speed is never optimal because....

PlayStation™ Optimisation. PlayStation

@ CPU Speed (cont)

Affectors: DMA
/ DMA channels affect CPU speed
Deny access to RAM which stalls code

(unless you're lucky)

During DMA, CPU can only access:
Internal registers
caches

PlayStation™ Optimisation. PlayStation

@ CPU Speed (cont)

Affectors: DMA sources
DMA to and from MDEC
DMA to and from GPU

DrawOTag - asynchronous GPU draw
D to DRAM DMA

PU RAM transfers
O transfers
OT clearing (ClearOTagR() only)

PlayStation™ Optimisation.

PlayStation

@ CPU Speed (cont)

Affectors: Cache fill
Instruction cache automatically filled
Slot by slot transfer

Each slot Is 4 32 bit words
‘Background level’ of DMA
‘'swings and roundabouts’

PlayStation™ Optimisation.

PlayStation

@ CPU Speed (cont)

Affectors: Interrupts
Possible to seriously affect CPU speed
Examples:

CPU clock interrupt
Pixel clock interrupt
Heavy processing in callbacks

PlayStation™ Optimisation.

PlayStation

O The compiler

CCPSX
Written by SN Systems, part of Psy-Q
Triggers other compilation phases

Handles passing options to correct phases
Front end for gcc, aspsx and psylink
No potential for optimisation here

PlayStation™ Optimisation. PlayStation

O The compiler (cont)

CPPPSX

standard GCC preprocessor
Macros, includes, etc

Optimisation:
Make small functions into macros
Lose function call overhead

Possible ‘code bloat’
No serious effect on readability

PlayStation™ Optimisation.

PlayStation

O The compiler (cont)

cclpsx

GCC object code compiler
(W/PSX modifications)

Handles C -> assembler conversion
Most scope for optimisation

See |ater

(cclplpsx is C++ version of cclpsx)

PlayStation™ Optimisation. PlayStation

O The compiler (cont)

aspsx
SN'’s assembler
Used by compiler only.

Not a macro assembler (eg asmpsx)
Not responsible for optimisation

PlayStation™ Optimisation.

PlayStation

O The compiler (cont)

psylink
SN Systems object linker
Links your code & objects with libraries

Builds final executable

Responsible for code positioning
Use map file for optimisation

Not responsible for any optimisation

PlayStation™ Optimisation. PlayStation

O The compiler (cont)

dmpsx
Postprocessor written by SCEI GTE team
Converts GTE macros inside program text

Builds real GTE cop2 instruction
sequences

Allows interleaving of CPU tasks with GTE
tasks

See GTE presentation for more details

PlayStation™ Optimisation. PlayStation

O Compiler Options

-0
~orces no optimisation
Does not re-order instructions

Does not attempt to remove delay slots
Allows debugger to step through C
Fixed expressions replaced with their value

No variables in registers (except
CElEINEES)

PlayStation™ Optimisation. PlayStation

O Compiler Options (cont)

-O1
First level of optimisation
Local variables put into registers

(Compiler’s decision which variables and which
registers are assigned)

Delay slots filled
Repeated expressions removed
Unneeded locals removed

PlayStation™ Optimisation. PlayStation

O Compiler Options (cont)

-0O2
As per O1
Turns on all but 2 optimisations

Eg Frame pointer elimination
More clever register allocation
Some make no difference in R3000

PlayStation™ Optimisation.

PlayStation

O Compiler Options (cont)

-O3
As Per -O2
Also compiler inlines functions

Heuristically chosen
Compiler unrolls loops
When loop iterations known

gcc supports more obscure optimisations
Not certain to provide improvement

PlayStation™ Optimisation. PlayStation

O What the compiler generates

General R3000 Info

RISC processor

only 1 load instruction

only 1 store instruction

Instructions all 32 bit

Synthetic instructions (macros)

32 bit addresses have to be ‘built’
Some instructions require a delay slot

PlayStation™ Optimisation. PlayStation

"~~~ What the compiler generates
" (cont)

Register set

32 general purpose registers
Orthogonal design

2 registers for division results (HI / LO)

Interrupt / exception registers in Copro O
Hardwired zero

PlayStation™ Optimisation. PlayStation

"~~~ What the compiler generates
" (cont)

Compiler conventions
1 assembler temporary
2 for function returns

4 for parameters

8 saved locals, 10 locals

stack, frame, global data pointers
return address

Interrupt handling

PlayStation™ Optimisation. PlayStation

"~~~ What the compiler generates
" (cont)

Assembler usage with C

Parameters, return values, temporaries
and assembler temp all fair game

17 registers available

Careful with gp, sp, fp and ra
Don’t touch kO, ki1

Use s0-s7, but save and restore
In raw assembler, no conventions

PlayStation™ Optimisation. PlayStation

"~~~ What the compiler generates
" (cont)

Reading & writing data
All addressing 16 bit offset to register
~ull 32 bit addresses built in 2 stages

~ollowed by or combined with load / store
_ocals faster than globals

Read / write FIFO

DRAM Write up to 5 cycles
D-cache write or read only 1 cycle

PlayStation™ Optimisation. PlayStation

"~~~ What the compiler generates
" (cont)

Marking Iinstruction seguences
Via __asm__ (“....."); construct

Output recognisable sequence

Examine disassembly

Code seguences marked

Possible to emit assembler directly in C
Careful with register convention

PlayStation™ Optimisation. PlayStation

"~~~ What the compiler generates
" (cont)

Function Parameters

First 4 parameters passed In registers
AO0-A3 (compiler convention)

Assuming 4 byte or smaller parameters
Thus including pointers

Functions with > 4 params are slower
Since extra params are pushed onto stack

PlayStation™ Optimisation. PlayStation

"~~~ What the compiler generates
" (cont)

Locals
On stack with -g
In temporary registers with -O or ‘register’

Compiler chooses

Temporaries saved across function call in
saved temporary registers

Functions with 10 locals or less faster
Load/store offset from fp (faster)

PlayStation™ Optimisation. PlayStation

"~~~ What the compiler generates
" (cont)

Globals

Full 32 bit address must be calculated
Since globals can be anywhere

Exception - when in sdata / shss section
Loads/stores offset from gp

But only 64Kbytes worth of data

Large data structures slow to access

PlayStation™ Optimisation. PlayStation

O | Cache Optimisation

On Chip SRAM Iinstruction cache
Automatically filled
4Kbytes
direct mapped
Slots are 4 words
Big impact for cache misses

-"r o

PlayStation™ Optimisation. PlayStation

O | Cache Optimisation (cont)

Code Layout
Avoid cache misses
Lay code out carefully
Consecutive 4K chunks map to same area
Regular jumps in code cause thrashing
4K alignment does not help speed
Move common functions closer

PlayStation™ Optimisation. PlayStation

O | Cache Optimisation (cont)

Code Layout
Stay Inside 4K bytes for critical routines
le the core processing functions
-> |mplies writing in R3000
Use map file to detect overlapping routines

Bottom 12 bits of address determine cache
block

PlayStation™ Optimisation. PlayStation

O | Cache Optimisation (cont)

Loop Layout
Use small loops
Minimise regularity of jumps
-> Stops cache refill happening so often

Large loops miss cache every iteration
Thus much slower

PlayStation™ Optimisation. PlayStation

O D Cache

On chip SRAM data cache

Under programmer control
Not filled automatically

1Kbytes

1 cycle read / write

Base address 0x1f800000
Top address 0x1f8003ff

PlayStation™ Optimisation. PlayStation

O D Cache Optimisation

Stack on D Cache

Set stack pointer to top of D cache

Stack grows down through cache

Do not use more than 1Kbytes stack

All locals on cache, 1 cycle read / write
Speedup around 10-15 %

Dependent on data organisation and usage

PlayStation™ Optimisation. PlayStation

O D Cache Optimisation (cont)

Variables on D Cache and sections
Directly declare variables on the cache
Use compiler pragma
Forces section for variable

Faster than making a pointer
(since pointer address must be loaded)

Must copy Initialisation data to cache

PlayStation™ Optimisation. PlayStation

O D Cache Optimisation (cont)

Declaring D Cache Variables
Best done with #define
Must initialise the variable
Or else section pragma ignored
Cannot use pragma for locals
For locals, use stack on cache
Pragma can be used to force code section
See example assembler / link file

PlayStation™ Optimisation. PlayStation

O D Cache Optimisation (cont)

Declaring D Cache Variables
Initialisation values in named group
Group in main RAM
Copy from DRAM to D cache
Get size from grouporg and groupend

PlayStation™ Optimisation. PlayStation
.

O Code Layout

WETORTIES
Generated by psylink (/m)
Shows location on code

non-static functions
non-static global variables
locations of groups / sections

Use to check | cache conflicts
‘Missing’ RAM

PlayStation™ Optimisation.

PlayStation

O Code Layout (cont)

Sections: text, data, bss, heap, stack
Text contains executable code
Data contains initialised variables

Bss contains uninitialised variables
Stack Is space for locals

Heap Is the rest of DRAM remaining
CPE/EXE contains text & data only

PlayStation™ Optimisation. PlayStation

O Code Layout (cont)

Sdata, Sbss
Special ‘short data’ sections
For direct access from the gp register

Variables stored within 16 bit offset of gp
gp fixed at startup time

And fixed throughout

Direct load / store

No 32 bit address building

PlayStation™ Optimisation.

PlayStation

O Code Layout (cont)

-mgpopt, -G<num> & gp

Force compiler to put variables in sdata /
sbss

-mgpopt forces gp optimisation

-G to specify maximum size in bytes

Cannot have more than 64K bytes of data
In sdata / sbbs combined

Link error will occur In this case

PlayStation™ Optimisation. PlayStation

O Miscellaneous

Inline
Code for simple functions inserted in caller
Function call overhead removed

Not across object modules (cclpsx, linker)
Not with -g

-O1 and above may inline automatically
Compiler chooses functions to inline

Or force with ‘inline’ keyword

PlayStation™ Optimisation. PlayStation

O Miscellaneous (cont)

register keyword in C
Only has any effect with -g
With -O<num> compiler makes choice
Compiler puts variables in registers
Possible to force a variable into a register
But not recommended

Compiler may make a better job of register
assignments than a programmer

PlayStation™ Optimisation. PlayStation

O Miscellaneous (cont)

register declarations

Example:
register int fastVar asn{"$8");

fastVar now stored in register 8 (t0)

Compiler cannot use registers you assign
this way In the variable’s scope

Cannot take address of register variables

Take care with compiler’s usual
assignments

PlayStation™ Optimisation. PlayStation

