PDA Kernel Specification

© 1998 Sony Computer Entertainment Inc.

Publication date: November 1998

Sony Computer Entertainment America 919 E. Hillsdale Blvd., 2nd floor Foster City, CA 94404

Sony Computer Entertainment Europe Waverley House 7-12 Noel Street London W1V 4HH, England

The PDA Kernel Specification manual is supplied pursuant to and subject to the terms of the Sony Computer Entertainment PlayStation® License and Development Tools Agreements, the Licensed Publisher Agreement and/or the Licensed Developer Agreement.

The PDA Kernel Specification manual is intended for distribution to and use by only Sony Computer Entertainment licensed Developers and Publishers in accordance with the PlayStation® License and Development Tools Agreements, the Licensed Publisher Agreement and/or the Licensed Developer Agreement.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part, of this book is expressly prohibited by law and by the terms of the Sony Computer Entertainment PlayStation® License and Development Tools Agreements, the Licensed Publisher Agreement and/or the Licensed Developer Agreement.

Ownership of the physical property of the book is retained by and reserved by Sony Computer Entertainment. Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is prohibited.

The information in the *PDA Kernel Specification* manual is subject to change without notice. The content of this book is Confidential Information of Sony Computer Entertainment.

PlayStation and PlayStation logos are registered trademarks of Sony Computer Entertainment Inc. All other trademarks are property of their respective owners and/or their licensors.

Table of Contents

About This Manual	v
Changes Since Last Release	v
Related Documentation	v
Developer Reference Series	v
Typographic Conventions	vi
Developer Support	vi
Kernel Services Overview	7
Memory map	7
System calls	7
Interrupt handling	7
Initial settings	8
Controlling PDA applications	9
Communication with the PlayStation	10
System Call Details	12
Software reset	13
Set user callback	14
Invoke user callback	15
Write to flash memory (relative sectors)	16
Set system clock frequency	17
Switch kernel mode	18
Get PDA status	19
Application block number control	20
Terminate/suspend application	21
Read serial number	22
Terminate file transfer with PlayStation	23
Write real-time clock	24
Read calendar	25
Read clock	26
Write serial number	27
Write flash memory (absolute number)	28
Control PlayStation communication	29
Get application status	30
Get user interface status	31
Get system call table	32
Get application block number	33
Get PDA application flag	34
Appendix	35

iv Table of Contents

About This Manual

This manual is the 1.5 release of the PDA Kernel Specification documentation.

Changes Since Last Release

This is the first English release of this documentation.

Related Documentation

This manual should be read in conjunction with the following documents:

PDA Hardware Specification

Developer Reference Series

This manual is part of the *Developer Reference Series*, a series of technical reference volumes covering all aspects of PlayStation development. The complete series is listed below:

Manual	Description
PlayStation Hardware	Describes the PlayStation hardware architecture and overviews its subsystems.
PlayStation Operating System	Describes the PlayStation operating system and related programming fundamentals.
Run-Time Library Overview	Describes the structure and purpose of the run-time libraries provided for PlayStation software development.
Run-Time Library Reference	Defines all available PlayStation run-time library functions, macros and structures.
Inline Programming Reference	Describes in-line programming using DMPSX, GTE inline macro and GTE register information.
SDevTC Development Environment	Describes the SDevTC (formerly "Psy-Q") Development Environment for PlayStation software development.
3D Graphics Tools	Describes how to use the PlayStation 3D Graphics Tools, including the animation and material editors.
Sprite Editor	Describes the Sprite Editor tool for creating sprite data and background picture components.
Sound Artist Tool	Provides installation and operation instructions for the DTL-H800 Sound Artist Board and explains how to use the Sound Artist Tool software.
File Formats	Describes all native PlayStation data formats.
Data Conversion Utilities	Describes all available PlayStation data conversion utilities, including both stand-alone and plug-in programs.
CD Emulator	Provides installation and operation instructions for the CD Emulator subsystem and related software.
CD-ROM Generator	Describes how to use the CD-ROM Generator software to write CD-R discs.

Performance Analyzer User Guide	Provides general instructions for using the Performance Analyzer software.
Performance Analyzer Technical Reference	Describes how to measure software performance and interpret the results using the Performance Analyzer.
DTL-H2000 Installation and Operation	Provides installation and operation instructions for the DTL-H2000 Development System.
DTL-H2500/2700 Installation and Operation	Provides installation and operation instructions for the DTL-H2500/H2700 Development Systems.

Typographic Conventions

Certain Typographic Conventions are used through out this manual to clarify the meaning of the text. The following conventions apply to all narrative text except for structure and function descriptions:

Convention	Meaning	
courier	Indicates literal program code.	
Bold	Indicates a document, chapter or section title.	
The following conventions apply within structure and function descriptions only:		

Convention	Meaning
Medium Bold	Denotes structure or function types and names.
Italic	Denotes function arguments and structure members.

Developer Support

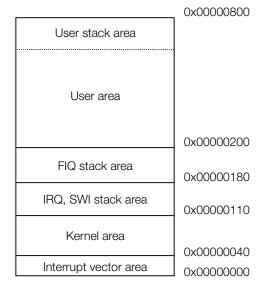
Sony Computer Entertainment America (SCEA)

SCEA developer support is available to licensees in North America only. You may obtain developer support or additional copies of this documentation by contacting the following addresses:

Order Information	Developer Support
In North America	In North America
Attn: Developer Tools Coordinator Sony Computer Entertainment America 919 East Hillsdale Blvd., 2nd floor Foster City, CA 94404 Tel: (650) 655-8000	E-mail: DevTech_Support@playstation.sony.com Web: http://www.scea.sony.com/dev Developer Support Hotline: (650) 655-8181 (Call Monday through Friday, 8 a.m. to 5 p.m., PST/PDT)

Sony Computer Entertainment Europe (SCEE)

SCEE developer support is available to licensees in Europe only. You may obtain developer support or additional copies of this documentation by contacting the following addresses:


Order Information	Developer Support
In Europe	In Europe
Attn: Production Coordinator	E-mail: dev_support@playstation.co.uk
Sony Computer Entertainment Europe	Web: https://www-s.playstation.co.uk
Waverley House	Developer Support Hotline:
7-12 Noel Street	+44 (0) 171 447 1680
London W1V 4HH	(Call Monday through Friday, 9 a.m. to 6 p.m.,
Tel: +44 (0) 171 447 1600	GMT or BST/BDT)

Kernel Services Overview

Memory map

The PDA kernel initializes static RAM as shown in the figure below. 512 bytes are reserved as a system area for interrupt vectors, the kernel, the system stack, etc. The remaining 1.5 Kbytes can be used as a user area. The user area includes the user stack.

Figure 1: Initial Memory Map

System calls

Applications use system calls for predefined kernel services. The parameters of a system call are passed in registers r0, r1, r2. If the system call returns a result, it is placed in register r0.

The main functions provided by system calls are:

- Setting up and handling of interrupts
- Controlling communication with the PlayStation
- Controlling PDA applications
- Setting the system clock
- Accessing flash memory
- Accessing the real-time clock
- Accessing the serial number

Details of the various system calls are presented below.

Interrupt handling

The PDA kernel handles interrupts by invoking callback functions previously set up by a PDA application. The callbacks handle responses to IRQ, FIQ, and software interrupts.

If a callback function uses Thumb mode, the LSB of the callback function address must be set to 1. When returning from the callback function, the previous mode that was active when the callback function was called, must be restored using an instruction such as "bx Ir".

When a callback function uses ARM mode, stack push and stack pop operations must be performed using pre-decrement store (stmfd) and post-increment load (ldmfd).

Since the kernel does not clear interrupt flags, the flags must be cleared by the callback function.

Handling of IRQ interrupts

If the IRQ interrupt source is either the PS interface power supply line (BATIRQ) or the real-time clock interrupt (RTCIRQ), the interrupt flags must not be cleared in the PDA application's callback function since these flags are cleared by the kernel. The interrupt status for these interrupt sources can be accessed from the application.

When an IRQ callback function is called, the kernel pushes the r0, r1, r12 and r14(lr) registers onto the IRQ stack. If other registers need to be saved, this must be done by the callback function.

FIQ interrupts

An FIQ interrupt from the Synchronous Serial Communications module (SPIFIQ) cannot be used by a PDA application since it is handled by the kernel.

When an FIQ callback function is called, the kernel pushes the r0, r1, r12 and r14(lr) registers onto the FIQ stack. If other registers need to be saved, this must be done by the callback function.

If the PDA is inserted in the PlayStation, FIQ interrupts must be handled with care. If an FIQ interrupt from counter 2 (TC2FIQ) takes place during communication with the PlayStation, a communication error may result. Communication with the PlayStation must be inhibited (swi 17) to provide reliable counter 2 FIQ interrupt handling

If the PDA is not inserted in the PlayStation, FIQ interrupts can be handled faster by rewriting the FIQ interrupt vector. If this is done, however, the interrupt vector must be restored to its original state later

Software interrupt handling

Software interrupts are used to perform operations that cannot be executed in user mode.

When a software interrupt callback function is called, the kernel pushes the r1-r12 and r14(lr) registers onto the software interrupt stack. Since the values for the r0-r10 registers are saved when the callback function is called, these can be used as parameters to the callback function. Also, the r0 register can be used to hold the return value from the callback function.

Using kernel services in callback functions

System calls cannot be invoked directly during interrupt processing. Therefore a service is provided so that the system call jump table can be accessed. This table contains jump destinations of the various system call processing modules arranged in sequence according to system call number.

To use a kernel service during interrupt processing, its jump destinations must be retrieved from this table in advance and passed as a parameter to the interrupt processing function.

Initial settings

When the PDA is reset, PIO01 is set up as an output port, the system clock is set to 4 MHz, the low-voltage detector is set active, and the LCD is turned on and set to a frame rate of 64 Hz. All other device registers are left in their reset states.

When an application is started, communication with the PlayStation is disabled and must be restarted using the PlayStation communication function control system call (swi 17). If the PDA is not inserted in the PlayStation, communication will not be started.

When the PDA is inserted or removed from the PlayStation, an interrupt is generated from the PS interface by the power supply voltage detector (BATIRQ). The interrupt handling for this event must include control of PlayStation communication status.

Controlling PDA applications

The kernel provides services for starting up, exiting and pausing applications. A PDA application is specified using its Memory Card block number. A single Memory Card can have 15 blocks, with block numbers 1 - 15 available. Block number 0 is reserved for the "Start-up Application".

Starting PDA applications

PDA applications are stored in blocks of 8 Kbytes, just like Memory Card data. If a PDA application spans two or more blocks, the application may or may not be stored in consecutive blocks. When a PDA application starts, the kernel maps discrete blocks into a continuous virtual address space using the MMU (memory management unit). The start of the virtual address space is always 0x2000000.

When mapped to the virtual address space, the PDA application is started from the address specified by the "program start address" field in the file header. It is assumed that the header of the "program start address" is at 0x2000000.

The start-up sequence for PDA applications is as follows: the application to be started next is established (swi 8); the currently active application is exited (swi 9); and control transitions to the next application. The power to the PDA cannot be cut off as long as the battery is running, so one of the PDA applications, including the "start-up application" is always running.

Once a PDA application exits (swi 9), there are two ways in which the application can be restarted. Regardless of which method is used, the system clock will be set to 4 MHz and all interrupts except for BATIRQ and RTCIRQ will be disabled immediately after start-up.

Also, registered callback functions will be cleared. The following is a description of the two methods for restarting an application.

Cold Start

The PDA application is started from the beginning.

The user area is initialized at this time.

Hot Start

The PDA application is started from where it left off.

However, if the "file type" field in the file header specifies "MCX0", a Cold Start will be forced since the RAM save area will not be preserved.

Exiting PDA applications

The system call for exiting a PDA application (swi 9) terminates the currently active PDA application and starts up the next application that was previously registered. The parameters to the application exit system call determine the manner in which the application is restarted.

Communication with the PlayStation must be inhibited (swi 17) immediately before exiting the PDA application.

Arguments to the "Start-up Application"

The following values can be used for the arguments to the "Start-up Application" (set in r2 of SWI 8). Improper operation may result if values other than these are specified.

Bit	Function
0-3	Specifies the block number (0x0 - 0xF). A zero means that no block is specified.
4-7	Specifies the screen to be displayed at start-up.
	0x1: Clock B screen. Block number specification is ignored.
	0x2: Clock A screen. If the specified block number is 0, normal display. If the block number is non-zero, clock-setting mode is enabled immediately after start-up, and pressing the "Enter" button will start up the PDA application at the specified block. (*)
	0x3: Game selection screen. The icon for the specified block number is displayed.

(*) This feature can be used to call the clock-setting feature of the "Start-up Application" from a user application. However, the user application will be restarted with no arguments so it is necessary to either use resume (see the description of swi 9) or to perform an operation such as writing to a flag in flash memory.

Communication with the PlayStation

Two types of callbacks are provided to allow a PDA application to be controlled from the PlayStation: the file transfer control callback and the device entry callback.

The file transfer control callback

The PlayStation library (libmcx) can notify a PDA application when data transfer starts and completes. The file transfer control callback is invoked when this notification takes place. This callback function is performed by setting the user callback (swi 1).

Parameters to the callback function are passed through the r0 register.

Table 1: Parameters to the file transfer control callback function

Bit 23-16	Bit 15-8	Bit 7-0
Transfer direction	Transfer control	Timeout interval
0 : PDA -> PlayStation	0 : Start	Timeout (no. of secs.)
1 : PDA <- PlayStation	non-0: Stop	

When an error is generated during a file transfer, the PDA application can perform error handling during a specified timeout interval. During this time, the PDA application must inform the kernel that transfer has stopped by invoking a system call (swi 11) indicating the end of file transfer with the PlayStation.

The device entry callback

Data transfer between the PlayStation and the PDA can be performed using the device entry callback contained in the file header. The device entry callback is called from the PlayStation library (libmcx).

The following is an example of the device entry callback function.

```
typedef struct {
    char *buf;
    unsigned long size;
} buf_rec;
buf_rec *dev_ent_callback(unsigned long status, char *rec_buf)
{
    :
}
```

The modes from the following table are assigned to each of the bits of status, above.

Table 2: Bit assignments of status

Bit	Meaning
0	Read
1	Write
2	Data transfer error
3	Parameter passing
4	Data transfer finished

When a parameter passed to the libmcx functions McxReadDev() or McxWriteDev() is received, the device entry callback is called in parameter-passing mode. Once the data has been transferred, the device entry callback is called again in data-transfer-finished mode.

In parameter-passing mode, the second parameter (rec_buf) contains the buffer address in which the received parameter is stored. The PDA application is then able to interpret the parameter.

In read mode, the size and address of the data to be sent is stored in a structure (buf_rec) and sent back as the return value. In write mode, the size and address of the data to be received is stored in the buf_rec structure and sent back as the return value.

In data-transfer-finished mode, the second parameter (rec_buf) contains the starting address of the transferred data. At this point, the PDA application can perform post-transfer operations. No return value is defined for data-transfer-finished mode. If an error was generated during data transfer, the data transfer error bit in status is set.

Notes on PDA device control

The IR communications module, speaker, and LED that are built into the PDA have high current consumption when active. Therefore, when the PDA is inserted in the PlayStation, the devices on the PDA must be activated in ways that do not exceed the PlayStation's current consumption capacity.

PDA status (described later) can be used to control devices while taking current consumption into consideration. Device status is represented as either enabled (0) or disabled (1). Device status is initialized as enabled, but is set to disabled when the PDA is inserted into the PlayStation. The status returns to enabled when the PDA is removed from the PlayStation. When the PDA is inserted in the PlayStation, the PlayStation application must grant permission to the PDA so that it can use the devices. The PlayStation application must take into account the maximum current that can be supplied to the devices before granting permission. Since the PlayStation controls PDA status in this manner, the PDA application must always check the PDA status before attempting to use a device. In other words, the PDA can use a device if its status is enabled but it must not if its status is disabled.

System Call Details

Table 3: System Call Table

System Call contents	Number	Argument	Return Value
Software reset	0	-	-
Set user callback	1	r0: Interrupt type r1: Address of callback function	Previous address of callback function
Invoke user callback	2	-	Return value of callback function
Write to flash memory (relative sectors)	3	r0: Destination address r1: Source address	Result of write
Set system clock frequency	4	r0: System clock frequency	Previous value of system clock frequency
Switch kernel mode	5	-	-
Get PDA status	6	-	Address of status buffer
Application block number control	8	r0: Get/set specification r1: Block number r2: Application argument	Get/set block number
Terminate/suspend application	9	r0: Restart method	-
Read serial number	10	-	Serial number
Terminate file transfer with PlayStation	11	-	-
Write real-time clock	12	r0: Year, month, day r1: Day of week, hour, minute, second	-
Read calendar	13	-	Calendar value
Read clock	14	-	Clock value
Write serial number	15	r0: Serial number	-
Write flash memory (absolute number)	16	r0: Write destination address r1: Write source address	Result of write
Control PlayStation communication	17	r0: State of communication with PlayStation	-
Get application status	18	rO	Application state
Get user interface status	19	-	Status buffer address
Get system call table	20	-	Address where table address is stored
Get application block number	22	-	Application block number of active application
Get application flag	24	r0: Program number (1-15)	PDA application flag

Software reset

Syntax

swi 0

Arguments

None

Return value

None

Set user callback

Syntax

swi 1

Arguments

- r0: Interrupt type
 - 0: Software interrupt
 - 1: IRQ interrupt
 - 2: FIQ interrupt
 - 3: Start/stop display of file transfer in progress from the PS
- r1: Address of the callback function

Return value

Previous address of callback function

Remarks

LSB is 1 if the callback function is written in ARM Thumb code. When returning from the callback, return to the destination mode using 'BX LR', etc.

When an interrupt is generated, registers are saved as needed before the callback function is called.

Table 4: Registers saved for each interrupt type

Type of interrupt	Saved register
Software interrupt	R1-R12, LR
IRQ interrupt	R0, R1, R12, LR
FIQ interrupt	R0, R1, R12, LR
Start/stop display of file	
transfer in progress from the PS	None

Invoke user callback

Syntax

swi 2

Arguments

None

Registers r0-r10 are passed to the user callback functions while holding the value when the system call was invoked

Return value

Return value of user callback function

Write to flash memory (relative sectors)

Overview

Each Memory Card block is 8 KBytes long and consists of 64 sectors. This system call performs writes, in one-sector (128 byte) units, from the starting sector in the Memory Card file using relative sector numbers.

Syntax

swi 3

Arguments

r0: Destination address

Destination address based on a relative sector number from the first sector of the file in Memory Card format (see notes below).

r1: Source data buffer address

Return value

- 0: Write succeeded
- 1: Write failed

Remarks

Before making this system call, the system clock frequency must be set to 4 MHz (no wait cycles). The source data buffer must be outside the flash memory area. The LSB of the source data buffer address must be 0.

When executing a PDA application, the MMU relocates the blocks assigned to the application to virtual addresses beginning at address 0x02000000. A "relative sector number" means a sector number relative to 0x02000000, where 0x02000000 is defined to be sector number 0.

Set system clock frequency

Syntax

swi 4

Arguments

r0: System clock frequency specification

- 1: 62kHz
- 2: 125kHz
- 3: 250kHz
- 4: 500kHz
- 5: 1MHz
- 6: 2MHz
- 7: 4MHz
- 8: 8MHz

Return value

The previous value of the system clock frequency

Remarks

If the system clock frequency is set to 8 MHz, wait cycle insertion mode is enabled automatically. For all other clock frequencies, the wait cycle insertion mode is disabled.

Note:

Although in 1.4 and earlier versions of this document, it was possible to use the "0" argument to set the system clock frequency to 32KHz, problems with this system call functioning were detected with the "0" argument. Therefore, assigning "0" to an argument is now prohibited . To set the system clock frequency to 32KHz without using this system call, set the device register directly by making <PMFrequency><FREQ> "0".

Switch kernel mode

Overview

When the PDA is inserted in the PlayStation, it is put in a state where it can communicate with the PlayStation as a Memory Card. At this time the system clock frequency will be set to 4 MHz. Subsequently, if this system call is used to change the system clock frequency to 2 MHz or lower, it will not be possible to use the PDA as a Memory Card.

Syntax

swi 5

Arguments

None

Return value

None

Get PDA status

Syntax

swi 6

Arguments

None

Return value

Address of status buffer

Remarks

Bit assignments for the status value (32 bits) are shown below.

Table 5: PDA status

Bit	Contents	0	1
0	Write to flash memory	Enabled	Disabled
1	Speaker output	Enabled	Disabled
2	LED light	Enabled	Disabled
3	Transmit infrared	Enabled	Disabled
8	Insertion/removal from PlayStation	Inactive	Active
9	Communication with PlayStation	Not possible	Possible
10	File transfer status with PlayStation	Exited	In transfer
11	PDA application exited	No	Yes

Bits 0 - 3 are initialized to the enabled state and are set to the disabled state when the PDA is inserted into the PlayStation. Subsequently, the PlayStation application may enable the devices as needed. The devices corresponding to bits 1 - 3 should be enabled by the PlayStation application provided current consumption is within the acceptable range. Thus, when PDA applications use these devices, they must check the PDA status and only use the devices that have been enabled.

The insertion/removal flag is cleared when the kernel mode switching system call (swi 5) is made.

The flag for communication with the PlayStation is controlled by the PlayStation communications control system call (swi 16).

The PDA application exited flag is set when a termination request is sent from the PlayStation application.

Application block number control

Overview

Gets/sets the starting block number (the block number that contains the file header) of the PDA application resident in the Memory Card.

Syntax

swi 8

Arguments

- r0: Block number control
 - 0: Get block number
 - 1: Set block number
- r1: Block number (1-15)
- r2: Application argument

* r1, r2 are set only when number setting

Return value

The get or set block number

Remarks

The application specified by this system call is started by the application terminate/suspend system call (swi 9).

Block number 0 indicates the default utility (clock feature, application selection feature).

Terminate/suspend application

Syntax

swi 9

Arguments

r0: Method for restarting the active application

- 0: Terminate the active application and "coldstart" when the application is restarted.
- 1: Terminate the active application and "resume" when the application is restarted.

r1: Parameter passed to application to be started. (Used only when cold-starting the program).

Return value

None

Read serial number

Syntax

swi 10

Arguments

None

Return value

Serial number

Terminate file transfer with PlayStation

Syntax

swi 11

Arguments

None

Return value

None

Remarks

If the PlayStation is reset while a file is being transferred to the PDA, the termination of the transfer cannot be detected. The kernel must be notified of the termination of this transfer by invoking this system call.

When the PDA is removed from the PlayStation, the PDA is automatically restored to its initial state, so it is not necessary to make this system call.

Write real-time clock

Syntax

swi 12

Arguments

r0: Year (high-order value), year (low-order value), month, day

r1: Day of the week, hours, minutes, seconds

Return value

None

Remarks

Parameters are expressed as two-digit BCD values. For the day of the week, the values 1 - 7 correspond to Sunday - Saturday.

For more information, please refer to the PDA specification.

Read calendar

Syntax

swi 13

Arguments

None

Return value

Calendar value. BCD in the form: YYYYMMDD.

Read clock

Syntax

swi 14

Arguments

None

Return value

Clock value. BCD in the form: DDHHMMSS.

For day (DD), values 1 - 7 correspond to Sunday - Saturday.

Write serial number

Syntax

swi 15

Arguments

r0: Serial number (32 bits)

Return value

None

Write flash memory (absolute number)

Overview

Each Memory Card block is 8 KBytes long and consists of 64 sectors. This system call uses absolute numbers to perform writes in one-sector (128 byte) units, where the sector starting at 0x08000000 corresponds to sector number 0.

Syntax

swi 16

Arguments

r0: Destination address

Destination address, expressed as an absolute sector number where the sector starting at 0x08000000 corresponds to sector number 0.

r1: Address of source data buffer

Return value

- 0: Write succeeded
- 1: Write failed

Remarks

Before making this system call, the system clock frequency must be set to 4 MHz (no wait cycles).

The source data buffer must be outside the flash memory area. The LSB of the source data buffer address must be 0.

Control PlayStation communication

Syntax

swi 17

Arguments

r0: State of communication with the PlayStation

- 0: Stopped
- 1: Started

Return value

None

Remarks

When communication between the PDA and PlayStation is interrupted, the PDA will no longer be recognized as a Memory Card. If the PDA is not mounted to the PlayStation, enabling the start of communication will not start communication.

Get application status

Overview

The starting block number (the block number that contains the file header) of the PDA application resident in the Memory Card is specified. The restart status of the application is retrieved.

Syntax

swi 18

Arguments

r0: Memory card block number (1-15)

Return value

Application status

- 0: Coldstart
- 1: Resume

Remarks

The presence of an application at the specified block number is not checked.

Get user interface status

Syntax

swi 19

Arguments

None

Return value

Address of the status buffer of the user interface

Remarks

The bit assignments of the status value (64 bits) are as shown below.

Table 6: User interface status

Bit	Contents	Notes
47-32	Font data starting address	Address relative to 0x4000000
23	Clock setting flag	0: Not set, 1: Set
22-20	Area code	0: Japan, 1: North America, 2: Europe
19-18	Speaker volume	0: high, 1: low, 2: off
17	Keylock ON/OFF	0: OFF, 1: ON
16	Alarm ON/OFF	0: OFF, 1: ON
15-8	Alarm: hour	2 digits, BCD
7-0	Alarm: minutes	2 digits, BCD

Output is 1/4 if the speaker volume shown on the clock screen of the PDA is set to Low. If the setting is High, the output value is left unchanged.

Refer to the appendix for font data details.

Get system call table

Syntax

swi 20

Arguments

None

Return value

Address at which the system call table address is stored.

Remarks

The system call table holds addresses in numeric order.

Get application block number

Syntax

swi 22

Arguments

None

Return value

Application block number of active application

Get PDA application flag

Overview

The internal FAT flag that is set when a PDA application stored in the Memory Card is downloaded directly from the PlayStation is obtained. This flag is cleared when a PDA application has been copied using the PlayStation Memory Card Set-up screen.

Format

swi 24

Arguments

r0: Memory Card block number (1-15)

Return value

PDA application flag

- 0: File is not a PDA application, or is a PDA application that was not downloaded directly from the PlayStation
- 1: File is a PDA application that was downloaded directly from the PlayStation

Remarks

Returns a 1-byte value from offset 126 of the application's FAT.

Appendix

Font data used by the "Start-up Application"

The font data used by "Start-up Application" is arranged according to the Font Data Map shown below. This font data is available for use by PDA applications. The starting address for the font data can be obtained through a system call (swi 19).

Refer to the Font Data Image for displayed font data images.

For font data in the fontdata48 category, the high-order byte (the bottom two lines of the Font Data Image) is reserved for other data and must be masked when used as font data.

Font Data Map

fontdata88

DCD 0x1519110E, 0x000E1113	;'0'
DCD 0x08080E08, 0x00080808	;'1'
DCD 0x0C10110E, 0x001F0102	;'2'
DCD 0x0C10110E, 0x000E1110	;'3'
DCD 0x090A0C08, 0x0008081F	;'4'
DCD 0x100F011F, 0x000E1110	;'5'
DCD 0x0F01020C, 0x000E1111	;'6'
DCD 0x0808101F, 0x00040404	;'7'
DCD 0x0E11110E, 0x000E1111	;'8'
DCD 0x1E11110E, 0x00060810	;'9'
DCD 0x0000000, 0x0000000	;''

DCD 0x00000300, 0x00000300	;null
DCD 0x7E242418, 0x007E425A	;lock
DCD 0x95175418, 0x00185417	;speaker
DCD 0x02000001, 0x00010000	;loud
DCD 0x09172458, 0x00191215	;spkoff
DCD 0x93a3de80, 0x000204fa	;batlow
DCD 0x2a122c48, 0x00097b26	;alloff
DCD 0x222a1c08, 0x00087f22	;allarm
DCD 0x2121213f, 0x001e212d	;mcard
DCD 0x1f111111. 0x00111111	:Н

DCD 0x110e0000, 0x001e011f	;e
DCD 0x04040406, 0x000e0404	;I
DCD 0x110e0000, 0x000e1111	;0

DCD 0xfdf9621c, 0xfcfafdfd	;hart01
DCD 0x7e7c231c, 0x1f3f7f7f	;hart02
DCD 0x081c3e7f, 0x00000000	;hart03
DCD 0xfd6db10e, 0xf0f8fefd	;hart11
DCD 0x1f17100f, 0x01030f1f	;hart12
DCD 0x1f1f0a00, 0x0000040e	;s_hart2
DCD 0x05000000, 0x00000207	;s_harSL
DCD 0x14000000, 0x0000081c	;s_harSS
DCD 0x0e12120f, 0x000f1212	;B
DCD 0x11110000, 0x00161911	;u
DCD 0x011e0000, 0x000f100e	;s
DCD 0x11110000, 0x000e101e	;у

fontdata48

DCD 0x00075557	;0
DCD 0x04022223	;1
DCD 0x05071747	;2
DCD 0x06074747	;3
DCD 0x07047564	;4
DCD 0x08074717	;5
DCD 0x08075717	;6
DCD 0x00022247	;7
DCD 0x04075757	;8
DCD 0x05074757	;9
DCD 0x06000000	;' '
DCD 0x07002020	;:
DCD 0x08012244	;/
DCD 0x08011122	;/
DCD 0x08024655	;y
DCD 0x01000000	;' '
DCD 0x020f5642	;a
DCD 0x01075744	;d
DCD 0x03061752	;e
DCD 0x2D022e2e	;F
DCD 0x62055711	;h
DCD 0x65088ad8	;M
DCD 0x64055700	;n
DCD 0x3D075700	;0

PDA Kernel Specification

DCD 0x70011350	;r
DCD 0x65068e2c	;S
DCD 0x6E04444e	;T
DCD 0x2B062720	;t
DCD 0x6D075500	;u
DCD 0x6105aaaa	;W
DCD 0x64022202	;i
DCD 0x2E001111	;!
DCD 0x16005752	;A(AM)
DCD 0x16005752 DCD 0x11001757	;A(AM) ;P(PM)
DCD 0x11001757	;P(PM)
DCD 0x11001757 DCD 0x0D00aa40	;P(PM) ;^(M)
DCD 0x11001757 DCD 0x0D00aa40 DCD 0x09002223	;P(PM) ;^(M) ;1(12h)
DCD 0x11001757 DCD 0x0D00aa40 DCD 0x09002223 DCD 0x02003123	;P(PM) ;^(M) ;1(12h) ;2(12h)

Font Data Image

0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	2	3
4	5	6	7
8	9	<i>μ</i> μ	null
Image: Constraint of the second state of the second sta	speaker	loud □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	spkoff <t< td=""></t<>
	alloff	alarm	mcard

H	e		O Image: Image
hart01	hart02	hart03	hart11
hart12	s_hart2	s_harSL	s_harSS

В	u	S	У

				4 	5 0 0 0 0 0 0 0 0 0 0 0 0 0		
8	9	" "					ии
a □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	d	e	F	h ■	M	n	O □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
r	S		t	U			
A(AM)	P(PM)	^(M) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	1(12h) ■ ■ □ □ □ □ ■ □ □ □ □ ■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	2(12h)	4(24h) ■ □ ■ □ ■ □ ■ □ □ □ ■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	h ■	