Run-Time Library Overview

CONFIDENTIAL

© 1999 Sony Computer Entertainment Inc.

Publication date: August 1999

Sony Computer Entertainment America
919 E. Hillsdale Blvd., 2nd floor
Foster City, CA 94404

Sony Computer Entertainment Europe
Waverley House

7-12 Noel Street

London W1V 4HH, England

The Run-Time Library Overview manual is supplied pursuant to and subject to the terms of the Sony
Computer Entertainment PlayStation® License and Development Tools Agreements, the Licensed
Publisher Agreement and/or the Licensed Developer Agreement.

The Run-Time Library Overview manual is intended for distribution to and use by only Sony Computer
Entertainment licensed Developers and Publishers in accordance with the PlayStation® License and
Development Tools Agreements, the Licensed Publisher Agreement and/or the Licensed Developer
Agreement.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part,
of this book is expressly prohibited by law and by the terms of the Sony Computer Entertainment
PlayStation® License and Development Tools Agreements, the Licensed Publisher Agreement and/or the
Licensed Developer Agreement.

Ownership of the physical property of the book is retained by and reserved by Sony Computer
Entertainment. Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is
prohibited.

The information in the Run-Time Library Overview manual is subject to change without notice. The content
of this book is Confidential Information of Sony Computer Entertainment.

PlayStation and PlayStation logos are registered trademarks of Sony Computer Entertainment Inc. All other
trademarks are property of their respective owners and/or their licensors.

CONFIDENTIAL

Summary Table of Contents

About This Manual

Chapter 1: Overview of the PlayStation OS
Chapter 2: Kernel Library

Chapter 3: Standard C Library

Chapter 4: Math Library

Chapter 5: Memory Card Library

Chapter 6: Extended Memory Card Library
Chapter 7: Data Compression Library
Chapter 8: Basic Graphics Library
Chapter 9: Basic Geometry Library
Chapter 10: Extended Graphics Library
Chapter 11: CD/Streaming Library
Chapter 12: Extended CD-ROM Library
Chapter 13: Controller/Peripherals Library
Chapter 14: Link Cable Library

Chapter 15: Extended Sound Library
Chapter 16: Basic Sound Library

Chapter 17: Serial Input/Output Library
Chapter 18: HMD Library

Chapter 19: PDA Library

Chapter 20: Memory Card GUI Module (Mcgui)

CONFIDENTIAL

1-1
2-1
3-1
4-1
5-1
6-1
7-1
8-1
9-1
10-1
11-1
12-1
13-1
14-1
15-1
16-1
17-1
18-1
19-1
20-1

Run-Time Library Overview

iv Table of Contents

List of Figures

Figure 1-1:
Figure 1-2:
Figure 2-1:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 8-1:

Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9

Boot Sequence

PlayStation library structure
Execution File Memory Map
Data Expansion and Display by MDEC
320x240 Image Breakdown
DCT Processing

DCT Compression

DCT Decompression

Graphics System

: Frame Buffer

: Pixels

: Display Area and Screen Area

: Drawing a Quadrilateral

: Polygon Vertex Format

: Perspective Transformation

: Drawing After Registering in OT
: Packet Double Buffer

Figure 8-10: Texture Pattern Format

Figure 8-1

1: Primitive Rendering Speed

Figure 8-12: Clipping

Figure 8-13: Cache Blocks in Texture Page
Figure 8-14: Cache Entries

Figure 8-15: Drawing Rule

Figure 8-1

6: Mapping

Figure 8-17: Displayed contents
Figure 8-18: Mapping
Figure 8-19: Displayed Contents
Figure 8-20: Mapping

Figure 8-2

1: Displayed Contents

Figure 8-22: Mapping

Figure 8-23: Displayed Contents

Figure 8-24: Display Starting Position

Figure 8-25: Switching between even and odd fields

Figure 9-1:
Figure 9-2:
Figure 9-3:
Figure 9-4:
Figure 9-5:
Figure 9-6:
Figure 9-7:
Figure 9-8:

Coordinate Axes

Vertex Order

Four Vertices

Writing data using DR_LOAD primitives
Strip Mesh

Round Mesh

PACKET Gp Configuration

VERTEX

Figure 10-1: Viewpoint and Screen
Figure 10-2: Preset Packet Format

Figure 10-3:

Figure 10-4: Texture Location

Figure 10-5: Polygon Vertex Order

Figure 11-1: Process of CD-ROM Transfer
Figure 11-2: ADPCM Sector Interleave
Figure 11-3: Example Multichannel Interleave
Figure 11-4: Ring Buffer Size 4 Example
Figure 12-1: CD libraries

Figure 13-

1: Callback Context

Figure 13-2: Callback Context

Run-Time Library Overview

CONFIDENTIAL

Three-dimensional Processing Flowchart

1-5
1-5
2-16

7-5
7-5
7-7
7-8
8-4
8-4
8-5
8-7
8-13
8-17
8-17
8-21
8-21
8-24
8-28
8-30
8-31
8-31
8-36
8-37
8-37
8-38
8-38
8-39
8-39
8-40
8-40
8-42
8-45
9-9
9-9
9-10
9-12
9-17
9-17
9-18
9-20
10-7
10-12
10-15
10-19
10-19
11-5
11-17
11-17
11-35
12-3
13-3
13-6

Figure 13-3:
Figure 13-4:
Figure 13-5:
Figure 15-1:
Figure 15-2:
Figure 15-3:
Figure 15-4:
Figure 16-1:
Figure 16-2:
Figure 16-3:
Figure 18-1:
Figure 18-2:
Figure 18-3:
Figure 18-4:
Figure 18-5:
Figure 18-6:
Figure 18-7:
Figure 18-8:
Figure 18-9:

Timing with VSync Interrupts (1)
Timing with VSync Interrupts (2)

SEQ data format

SEP data format

VAB Switching Using Control Changes

VAB format and VAB header

Sound Buffer Memory Layout

Four States and their Transitional States

Four Callback Functions and Transitional States
HMD Basic Architecture

Hierarchical Structure

Strip Mesh

Shared Polygons

Combining vertex and joint MIMe

Process flow and data structures

Linking primitive sets and coordinate systems
Primitive sets, primitives, primitive headers, sections
Index starting point

Figure 18-10: Index reference

Figure 18-11

: Pointer reference

Figure 18-12: Vertex MIMe
Figure 18-13: Vertex MIMe reset
Figure 18-14: Joint Axes MIMe
Figure 18-15: Joint RPY MIMe

Figure 19-1:
Figure 19-2:
Figure 19-3:
Figure 20-1:
Figure 20-2:
Figure 20-3:
Figure 20-4:

Function calling sequence

File list functions

Game selection function

Save Operation of the Memory Card Screen

Load Operation of the Memory Card Screen

Location where textures are loaded in the frame buffer
mcgui texture data structure

CONFIDENTIAL

Table of Contents v

13-7
13-8
13-10
15-4
15-5
15-8
15-8
16-7
16-10
16-11
18-3
18-4
18-5
18-6
18-7
18-8
18-9
18-12
18-13
18-13
18-14
18-14
18-15
18-16
18-17
19-4
19-10
19-11
20-4
20-5
20-7
20-8

Run-Time Library Overview

vi Table of Contents

List of Tables

Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:
Table 2-6:
Table 2-7:
Table 2-8:
Table 2-9:

SYSTEM.CNF Overview

ToT Entries

Descriptor Bit Patterns

Descriptor Classification

List of Root Counters

Counter Timing

Pixel Display Timing and Display Width
Root Counter Mode (1)

Root Counter Mode (2)

Table 2-10: Root Counter Mode (3)

Table 2-11: Root Counter Gate Condition

Table 2-12: Cause Descriptor (Kernel Library Related Only)
Table 2-13: Event Conditions

Table 2-14: Event Modes

Table 2-15: TCB status

Table 2-16: Register-Specified Macro

Table 2-17: 10 Devices

Table 2-18: CD-ROM File System (ISO 9660 Level 1)
Table 2-19: Memory Card File System

Table 2-20: Summary of Terminal Types

Table 2-21:
Table 2-22:
Table 2-23:
Table 2-24:
Table 2-25:

Mouse

16-Button Analog

Gun Controller (Konami)
16-Button

Analog Joystick

Table 2-26: Gun Controller (Namco)

Table 2-27:
Table 2-28:
Table 2-29:

Analog Controller
Multi Tap Received Data Configuration
Button status bit assignments

Table 2-30: Kanji Fonts

Table 2-31:
Table 2-32:
Table 2-33:
Table 3-1:
Table 4-1:
Table 4-2:
Table 4-3:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:
Table 5-7:
Table 6-1:
Table 6-2:
Table 6-3:
Table 6-4:
Table 7-1:
Table 7-2:
Table 7-3:
Table 8-1:
Table 8-2:

Run-Time Library Overview

Font Data Format
Memory Card allocation functions
Performance comparison between memory allocation functions
Header Files
Float Format
Double Format
Error Notificaton
Memory Card Specifications
Events Associated with the Memory Card
Memory Card BIOS
Memory Card File System
Memory Card File Names
Memory Card File Header
Type Field
Memory Card Specifications
Memory Card Filenames
Memory Card File Header
Type Field
Compression and Decompression Algorithms
Decompression Speed and Resolution
Transfer Speed and Data Size
Display Modes
Double Buffer

CONFIDENTIAL

2-11
2-13
2-13
2-14
2-15
2-15
2-17
2-18
2-18
2-18
2-18
2-19
2-19
2-19
2-20
2-20
2-21
2-21
2-23
2-23

3-3

4-3

4-3

4-4

5-3
5-4
5-7
5-9
5-9
5-10
6-4
6-5
6-5
6-6
7-6
7-10
7-10
8-5
8-7

Table 8-3: Polygon Primitives

Table 8-4: Line Primitives

Table 8-5: Sprite Primitives

Table 8-6: Special Primitives

Table 8-7: OT

Table 8-8: Reset Levels

Table 8-9: libgpu callback registering functions

Table 8-10: Texture Pattern Modes

Table 8-11: Transparent/Semi-Transparent Pixels

Table 8-12: Semi-Transparency Rates

Table 8-13: Texture Cache Size

Table 8-14: Access Cycles

Table 8-15: Number of Access Cycles

Table 8-16: Number of Cycles in POLY_FT4

Table 8-17: Number of Cycles in SPRT

Table 8-18: Number of Cycles Used when Reduction Is Involved
Table 8-19: Texture Cache Dependencies

Table 8-20: Size of Cache Blocks and Cache Entries
Table 8-21: Differences between NTSC and PAL

Table 9-1: Recommended Format for GTE Constants
Table 9-2: Flag Bit Settings

Table 9-3: 16-Bit Flag Bit Settings

Table 9-4: 4-Type Bit Configuration

Table 9-5: Polygon Division Functions

Table 10-1: Hierarchical Structuring

Table 10-2: Packet Creation Function Comparison Chart 1
Table 10-3: Packet Creation Function Comparison Chart 2
Table 10-4: State of Scratch Pad Consumption

Table 10-5: Scratch pad usage volume

Table 10-6: mip-map Low-level Function Group

Table 11-1: Sector Types

Table 11-2: Primitive Commands and Corresponding Codes
Table 11-3: Primitive Command Arguments

Table 11-4: Primitive Command Return Values

Table 11-5: Bit Assignments of Status Byte

Table 11-6: The Operation of CdISeek/CdISeekP

Table 11-7: Mode Settings of CdlSetmode

Table 11-8: CdiGetlocL Parameters

Table 11-9: CdIGetlocP

Table 11-10: CdIGetTN

Table 11-11: CdIGetTD

Table 11-12: Primitive Command Processing Status
Table 11-13: CdSync() Mode Argument Values and Contents
Table 11-14: Retry Read/No-Retry Read

Table 11-15: Sector Buffer Status

Table 11-16: Information Obtained in Report Mode

Table 11-17: Event Services

Table 11-18: Callback, Synchronous Functions

Table 11-19: Error levels

Table 11-20: Interrupt functions

Table 12-1: Primitive Commands

Table 12-2: Structures

Table 12-3: Confirming Completion of Command

Table 13-1: Callback Types

Table 13-2: Initialization Functions that Call ResetCallback()
Table 13-3: Terminal Types

CONFIDENTIAL

Table of Contents vii

8-9
8-10
8-10
8-10
8-16
8-18
8-19
8-23
8-25
8-25
8-27
8-28
8-29
8-29
8-29
8-29
8-30
8-32
8-41
9-15
9-15
9-16
9-18
9-21
10-6

10-14
10-14
10-17
10-17
10-17
11-3
11-6
11-7
11-8
11-8
11-9
11-10
11-10
11-11
11-11
11-11
11-12
11-12
11-14
11-15
11-18
11-19
11-19
11-28
11-36
12-4
12-5
12-7
13-4
13-4
13-11

Run-Time Library Overview

viii

Table of Contents

Table 13-5: Mouse

Table 13-6: 16-button Analog

Table 13-7: Gun Controller (Konami Ltd.)

Table 13-8: Analog Joystick

Table 13-9: Gun Controller (Namco Ltd.)

Table 13-10: Analog Controller

Table 13-11: Receive Data Structure For Multi Tap Controller
Table 13-12: Button State Bit Assignments (1)

Table 13-13: Button State Bit Assignments (2)

Table 13-14: System Clock-Pixel Clock Conversion Table
Table 13-15: Actuator Current Drain

Table 13-16: Receiving Packet Format

Table 13-17: Memory Card

Table 13-18: Button Data (bufA, bufB)

Table 13-18

Table 13-21: buf0, buf1 structures defined in INitGUN
Table 13-20: System Clock/Pixel Clock Conversion
Table 14-1: Link Cable Driver

Table 14-2: Events

Table 14-3: Command Summary

Table 14-4: Driver Status

Table 14-6: Control Line Status

Table 14-8: Communication Mode

Table 14-10: Control Line

Table 14-11: Communication Specifications

Table 14-12: Control Line Transition

Table 15-1: Data1-Data3 Contents

Table 15-2: Data3 Mode Type

Table 15-3: Data3 Reverb Type (See Also Sound Delicatessen DSP)
Table 15-4: Looping Using Control Changes

Table 15-5: Marking via Control Changes

Table 16-1: LFO Control Expression Format

Table 19-1: PDA Memory Card specifications

Table 19-2: Existing File Header (non-PDA compatible)
Table 19-3: Memory Card extended file header
Table 19-4: Game selection icon entry table

Table 19-5: Device entry table

Table 19-6: Icon Types

Table 19-7: Icons used in the file list

Table 19-8: Icon animation update frequency

Table 19-9: Device current consumption

Table 20-1: Supported controllers

Run-Time Library Overview CONFIDENTIAL

13-12
13-12
13-12
13-12
13-13
13-13
13-13
13-14
13-14
13-14
13-17
13-18
13-18
13-19
13-20
13-20
13-20
14-3
14-3
14-5
14-6
14-6
14-6
14-7
14-7
14-7
15-6
15-6
15-7
15-7
15-7
16-5
19-5
19-6
19-6
19-8
19-9
19-9
19-10
19-11
19-13
20-6

About This Manual

This manual is the latest release of the Library Overview for Run-Time Library 4.6. The purpose of this
manual is to provide overview-level information about the PlayStation® libraries. For related descriptions of
the PlayStation run-time library functions and structures, please refer to the Run-Time Library Reference.

Changes Since Last Release

Since release 4.5 of the Run-Time Library Overview, the following changes have been made:

Ch. 8: Basic Graphics Library

* A “GPU timeout message” item has been added to the “Cautionary Programming Notes” section.

Ch. 11: CD/Streaming Library

» Corrections have been made in the “Skipped Sections” item of the “Notes on Using Low Level

Function Groups" section.

Ch. 19: PDA Library

* A note has been added to the “"Game selection icon image” item of table 19-3 in the “File Header”

section.

» Additional information has been added to the “Game selection icons” item in the “File header” section.
* A “Notes onicon entry table and icon image position” item has been added to the “lcons” section.

Related Documentation

This manual should be read in conjunction with the Run-Time Library Reference, which defines all
structures and functions available in the Run-Time Library.

Manual Structure

Chapter

Description

Ch. 1: Overview of the PlayStation OS

Ch. 2: Kernel Library

Ch. 3: Standard C Library

Ch. 4: Math Library

Ch. 5: Memory Card Library

CONFIDENTIAL

Summarizes the PlayStation operating
system and the run-time libraries.

Describes the Kernel library (libapi), which
provides an interface between applications
and the PlayStation OS.

Describes the PlayStation’s subset of the
standard C library (libc/libc2). This library
includes character functions, memory
operation functions, character class tests,
non-local jumps, and utility functions.

Describes the Math Library (lilbmath), which
contains ANSI/IEEE754 compliant math
functions, including a software floating point
computation package.

Describes the Memory Card Library (libcard)
for reading/writing to the PlayStation
Memory Card and calling the Memory Card
BIOS service.

Run-Time Library Overview

x About This Manual

Chapter

Description

Ch. 6: Extended Memory Card Library

Ch. 7: Data Compression Library

Ch. 8: Basic Graphics Library

Ch. 9: Basic Geometry Library

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

Run-Time Library Overview

10: Extended Graphics Library

11: CD-ROM Library

12: Extended CD-ROM Library

13: Controller/Peripherals Library

14: Link Cable Library

15: Extended Sound Library

16: Basic Sound Library

17: Serial Input/Output Library

Describes the Extended Memory Card
Library (lilbmcard), which provides a high-
level interface for accessing the Memory
Card.

Describes the Data Compression Library
(libpress) for compressing (encoding) and
expanding (decoding) image and sound
data.

Describes the Basic Graphics Library
(libgpu) for drawing primitives such as
sprites, polygons, and lines.

Describes the Basic Geometry Library
(libgte), which uses the PlayStation GTE co-
processor to handle high-speed geometry
operations.

Describes the Extended Graphics Library
(libgs) which uses the libgpu and the libgte
to construct a 3-dimensional graphics
system. It deals with more abstract entities
such as objects and background surfaces.

Describes the CD-ROM Library (libcd), for
controlling the PlayStation CD-ROM drive. It
also contains functions for “streaming” real-
time data such as movies, sounds or vertex
data stored on high-capacity media.

Describes the Extended CD-ROM Library
(libds), which builds a new interface to the
libcd kernel. It has the same capabilities as
libcd, and places further emphasis on
reliable CD-ROM controls such as recovery
from system errors.

Describes the Controller/Peripherals Library,
which consists of a group of libraries (libetc,
libgun, libtap, and libpad) for performing low-
level interrupt processing and controller-
related functions.

Describes the Link Cable Library (libcomb),
which provides services for connecting
PlayStation units via a “link” cable.

Describes the Extended Sound Library
(libsnd), which provides functions for
working with sound data on the PlayStation.

Describes the Basic Sound Library (libspu)
for controlling the SPU (sound processing
unit).

Describes the Serial Input/Output Library
(libsio) for supporting communications
between the PlayStation and a PC.

CONFIDENTIAL

About This Manual

Chapter

Description

Ch. 18: HMD Library

Ch. 19: PDA Library

Ch. 20: mcgui Module

Describes the HMD Library (libhmd), which
provides functions and definitions for
handling the HMD format, which integrates
modeling, animation, texture, and MIMe
data.

Describes the PDA Library (llomex) used to
provide access to PDA functions when it is
inserted into a Memory Card slot.

Describes the module for saving and loading
data in game titles, as well as support for the
user interface

Developer Reference Series

This manual is part of the Developer Reference Series, a series of technical reference volumes covering all
aspects of PlayStation development. The complete series is listed below:

Manual

Description

PlayStation Hardware
PlayStation Operating System

Run-Time Library Overview

Run-Time Library Reference

Inline Programming Reference

SDevTC Development Environment

3D Graphics Tools

Sprite Editor

Sound Artist Tool

File Formats

Data Conversion Utilities

CD Emulator

CONFIDENTIAL

Describes the PlayStation hardware
architecture and overviews its subsystems.

Describes the PlayStation operating system
and related programming fundamentals.

Describes the structure and purpose of the
run-time libraries provided for PlayStation
software development.

Defines all available PlayStation run-time
library functions, macros and structures.
Describes in-line programming using
DMPSX, GTE inline macro and GTE register
information.

Describes the SDevTC (formerly "Psy-Q")
Development Environment for PlayStation
software development.

Describes how to use the PlayStation 3D
Graphics Tools, including the animation and
material editors.

Describes the Sprite Editor tool for creating
sprite data and background picture
components.

Provides installation and operation
instructions for the DTL-H800 Sound Artist
Board and explains how to use the Sound
Artist Tool software.

Describes all native PlayStation data
formats.

Describes all available PlayStation data
conversion utilities, including both stand-
alone and plug-in programs.

Provides installation and operation
instructions for the CD Emulator subsystem
and related software.

Run-Time Library Overview

Xi

xii About This Manual

Manual Description

CD-ROM Generator Describes how to use the CD-ROM
Generator software to write CD-R discs.

Performance Analyzer User Guide Provides general instructions for using the
Performance Analyzer software.

Performance Analyzer Technical Describes how to measure software

Reference performance and interpret the results using
the Performance Analyzer.

DTL-H2000 Installation and Operation Provides installation and operation

instructions for the DTL-H2000
Development System.

DTL-H2500/2700 Installation and Provides installation and operation
Operation instructions for the DTL-H2500/H2700
Development Systems.

Typographic Conventions

Certain Typographic Conventions are used throughout this manual to clarify the meaning of the text:

Convention Meaning
courier Indicates literal program code.
italic Indicates names of arguments and structure
members (in structure/function definitions
only).
Developer Support

Sony Computer Entertainment America (SCEA)

SCEA developer support is available to licensees in North America only. You may obtain developer support
or additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In North America: In North America:

Attn: Developer Tools Coordinator E-mail:

Sony Computer Entertainment America DevTech_Support@playstation.sony.com
919 East Hillsdale Blvd., 2nd floor Web: http://www.scea.sony.com/dev
Foster City, CA 94404 Developer Support Hotline: (650) 655-8181
Tel: (650) 655-8000 (Call Monday through Friday,

8 a.m. to 5 p.m., PST/PDT)

Run-Time Library Overview CONFIDENTIAL

http://www.scea.sony.com/dev

About This Manual xiii

Sony Computer Entertainment Europe (SCEE)

SCEE developer support is available to licensees in Europe only. You may obtain developer support or
additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In Europe: In Europe:

Attn: Production Coordinator E-mail: dev_support@playstation.co.uk
Sony Computer Entertainment Europe Web: https://www-s.playstation.co.uk
Waverley House Developer Support Hotline:

7-12 Noel Street +44 (0) 171 447 1680

London W1V 4HH (Call Monday through Friday,

Tel: +44 (0) 171 447 1600 9 a.m. to 6 p.m., GMT or BST/BDT)

CONFIDENTIAL Run-Time Library Overview

https://www-s.playstation.co.uk

xiv About This Manual

Run-Time Library Overview CONFIDENTIAL

Chapter 1:
Overview of the PlayStation OS

Table of Contents

The PlayStation OS

Features of the PlayStation OS
Programming in C
Easy Access to the Features of the R3000
Small Size, Emphasis on Performance
Provision for Hardware Functions
Single and Multitasking
The File System Device Driver

Starting and Operating the OS
Activation of the OS
Boot Sequence

RN G N U U W)
]

— -k
| N |

\l\l\l\l\l\l\l\l\l\l\l@@@@@@éﬁ@@@@(ﬂ A A PP OODOLLW W

PlayStation OS Library Components
libapi (Kernel Library)
libc/libc2 (Standard C Libraries)
libmath (Math Library)
libcard (Memory Card Library)
libmcrd (Extended Memory Card Library)
libpress (Data Compression Library)
libgpu (Basic Graphics Library)
libgte (Basic Geometry Library)
libgs (Extended Graphics Library)
libcd (CD/Streaming Library)
libds (Extended CD-ROM Library)
libetc (Peripherals Library)
libtap (Multi Tap Library)
libgun (Gun Library)
libpad (Controller Library)
libcomb (Link Cable Library)
libsnd (Extended Sound Library)
libspu (Basic Sound Library)
libsio (Serial Input/Output Library)
libhmd (HMD Library)
libmex (PDA Library)
mcgui (Memory Card GUI module)

—_ 4 4 4 4 4 14 4 4 414 4 4 a4 a4 4 a4 A -,
|

CONFIDENTIAL Run-Time Library Overview

1-2 Overview of the PlayStation OS

Run-Time Library Overview CONFIDENTIAL

Overview of the PlayStation OS 1-3

The PlayStation OS

The PlayStation OS is a flexible and powerful operating system, which allows developers to take maximum
advantage of the PlayStation’s capabilities.

The OS has been developed for the R3000, which is the PlayStation's CPU. The efficiency of program
development relies heavily on the environment and services provided by the OS. If the CPU and peripheral
devices are fast enough, you won’t need to spend your time trying to maximize the hardware’s capabilities.
You can concentrate on programming using the services the OS provides for you.

The PlayStation OS is designed to give the game program developer an environment in which interrupts
can be easily controlled. Based on this concept, the kernel of the PlayStation OS provides services to
control PlayStation hardware and the R3000.

Each service is provided as a C language function. By using C, your programs can be more readable and
maintainable, and you can program more easily using block structure description and function calls.

Features of the PlayStation OS

This section describes the characteristics of the PlayStation’s design concept.

Programming in C

Most services, such as controlling the R3000 CPU and the PlayStation hardware, are provided as C
language functions. Therefore, programs can be written completely in C.

Easy Access to the Features of the R3000

Interrupt control in the R3000 is said to be complicated, but the PlayStation OS uses a substitute
“dispatcher” system which has a simple interface. The dispatcher’s overhead is kept very low, and it
provides low-level support not available in ordinary operating systems. Because of this, the chip's
capabilities can be fully exploited and high quality tuning can be achieved. And because everything can be
done in G, it is not necessary to learn the intricacies of R3000 assembler.

Small Size, Emphasis on Performance

Because of the importance of an application's performance, the PlayStation OS was designed so that its
RAM usage (64K bytes) and use of the CPU are kept to a minimum. In addition, the OS system tables are
disclosed, and consideration given to future expansion of the OS.

To achieve greater speed, the PlayStation OS doesn’t carry out many checks of prohibited items that other
operating systems would. This policy allows applications to achieve a higher level of tuning. However, to
avoid the risk of prohibited operations being performed, applications may need to perform some checks
that would normally be carried out by the operating system.

Provision for Hardware Functions

Previously, to control video game machine hardware, one has had to analyze hardware driver code and
painstakingly write one’s code in assembler. The PlayStation OS lightens this burden by providing C
language functions to control hardware. The overhead of each function is kept to a minimum.

CONFIDENTIAL Run-Time Library Overview

1-4 Overview of the PlayStation OS

Single and Multitasking

The PlayStation OS can carry out many tasks asynchronously while executing code, such as controlling a
CD-ROM drive, which is a comparatively slow device, and playing background music.

When the OS starts, it is in single-task mode. If desired, you can specify that your application will have
multiple tasks or threads. See Chapter 2, “Kernel Library”, for information on threads.

The File System Device Driver

The PlayStation’s file system (i.e., files of data on CD-ROM) is accessed via a device driver. This allows
multiple file systems to coexist, and improves development time by avoiding low level file manipulation
problems.

Starting and Operating the OS

The PlayStation OS provides a game program developer's environment. Therefore, there is fundamentally
no interface for the user to operate directly (excluding the debug monitor in the debug environment).
Applications must provide the user interface.

Activation of the OS

When the system starts, it jumps first a special address in ROM and performs a check on connected
hardware (such as a CD-ROM drive).

It then checks for a suitable disk in the CD-ROM drive. If it finds one, it reads the system configuration file
(SYSTEM CNF).

If there is no disk, a ROM-resident demonstration program plays repeatedly.

Boot Sequence

The boot sequence is as follows:

Run-Time Library Overview CONFIDENTIAL

Overview of the PlayStation OS 1-5

Figure 1-1: Boot Sequence

Initialize System Operation Memory
v
Set System Stack

v

Initialize Kernel Memory

v
Initialize System Memory Control Capability

v

Initialize IO Manager

v

Set Error Handler

v
Read System Setting File (system.cnf)

v
Analyze System Setting File
v
Maintain All System Table Types

v

Read Boot Execution File

v
Set Stack

v

Execute Boot Execution File

PlayStation OS Library Components

PlayStation libraries can be thought of as low-level libraries or high-level libraries, depending on their
relationship to the PlayStation OS. They form a two-level library structure. Programs may use any level as
needed, and, with some exceptions, may use both levels concurrently.

Figure 1-2: PlayStation library structure

libpad
libcomb
libsio
. libgun
libhmd libtap
libgs libsnd libcd | libds libmerd | jipmex "Ili’,;’r;";’fhz

libsn

libgpu | libgte libapi libspu | libpress libetc | libcard

CONFIDENTIAL Run-Time Library Overview

1-6 Overview of the PlayStation OS

A summary of the libraries follows:

libapi (Kernel Library)

Provides an interface (API) between the PlayStation OS and applications.

libc/libc2 (Standard C Libraries)

A subset of the standard C library, including character functions, memory operation functions, character
class tests, non-local jumps, and utility functions.

libmath (Math Library)

Contains ANSI/IEEE754 compliant math functions and a software floating point computation package.

libcard (Memory Card Library)

Provides functions for controlling the Memory Card, which preserves data after reset and power off. It
includes the Memory Card, the file system, and drivers.

libmcrd (Extended Memory Card Library)

Provides a high-level interface to the Memory Card.

libpress (Data Compression Library)

Provides functions for compressing (encoding) and expanding (decoding) image and sound data.

libgpu (Basic Graphics Library)

Contains commands for the drawing engine and for building a drawing command list. Handles data for
simple entities such as sprites, polygons and lines.

libgte (Basic Geometry Library)

A library for controlling the GTE (geometry transformation engine). Handles data such as matrices and
vertices.

libgs (Extended Graphics Library)

A three-dimensional graphics system which uses libgpu and libgte. Handles larger entities such as objects
and background surfaces.

libcd (CD/Streaming Library)

Reads program, image, and sound data from a CD-ROM drive, and performs playback of DA (digital audio)
and XA sound. Also includes fast disk access through a file name key, and a support function for
simultaneous data reading and processing streaming techniques.

libds (Extended CD-ROM Library)

Builds a new interface to the CD-ROM library kernel. Has the same capabilities as libcd and places further
emphasis on reliable CD-ROM controls such as performing error recovery .

Run-Time Library Overview CONFIDENTIAL

Overview of the PlayStation OS 1-7

libetc (Peripherals Library)

Performs callback control for using controllers and other peripheral devices and processing low-level
interrrupts.

libtap (Multi Tap Library)

Allows access to 3-8 controllers and memory cards through the optional peripheral multi-tap.

libgun (Gun Library)

Provides access to Light Pen type input equipment which can connect to the controller connector.

libpad (Controller Library)

A library for accessing the controller. Supports extended protocol controllers such as DUAL SHOCK.

libcomb (Link Cable Library)

Communicates between the link cable and PlayStation. It includes an 8-bit block size communication
driver.

libsnd (Extended Sound Library)

Plays as background, sound production sequences that have been prerecorded as score data.

libspu (Basic Sound Library)

Controls the SPU (sound processing unit).

libsio (Serial Input/Output Library)
Sets the standard input/output on the debugging station to SIO 1.

libhmd (HMD Library)

Provides functions and definitions for handling the HMD format, which integrates modeling, animation,
texture, and MIMe data.

libmcx (PDA Library)

The PDA library provides access to various functions of the PDA when it is inserted into a Memory Card
slot.

mcgui (Memory Card GUI module)

This module provides support for loading and saving data in game titles, as well as support for the user
interface.

CONFIDENTIAL Run-Time Library Overview

1-8 Overview of the PlayStation OS

Run-Time Library Overview CONFIDENTIAL

Chapter 2:
Kernel Library

Table of Contents

Overview

Library and Header Files
System Designation File
System Table Information (ToT)
Descriptors

Callbacks

Inhibition of Interrupts

Interrupt Context

Kernel Reserved Memory Areas

Root Counter Control

Events

Counter Timing

Mode

Gate

Status Immediately After Kernel Starts
Root Counter and Critical Section

Use of the Root Counter by the Kernel

Cause Descriptor and Type of Event
Event Handler

Event Status

Mode

Event Creation

Clearing an Event

User-Defined Event

Threads

Context and TCB

Status Immediately After Kernel is Started
Thread Open and Switching Execution TCB
Interrupts and TCB

TCB Status

Register Specification Macros

I/0 Management

CD-ROM File System
Memory Card File System
Standard I/O Stream

Module Control

Execution File Data Structure

Controller Features

Initialization
Buffer Data Format

CONFIDENTIAL

2-3
2-3
2-4
2-5
2-6
2-6
2-6
2-7

2-7
2-8
2-8
2-9
2-9
2-9
2-9

2-10
2-10
2-11
2-11
2-11
2-11
2-12

2-12
2-12
2-12
2-12
2-13
2-13
2-13

2-14
2-15
2-15
2-15

2-16
2-16
2-17
2-17
2-17

Run-Time Library Overview

2-2 Kernel Library

Kaniji Fonts
Data Format
Usage Example

Memory Allocation

Run-Time Library Overview

CONFIDENTIAL

2-21
2-21
2-22

2-23

Kernel Library

Overview

The Kernel library (libapi) provides an interface (API) by which applications can control basic aspects of the

PlayStation OS, including the CPU and other hardware features.
It includes the following services:

* Root-counter processing
» Event processing

* Thread processing

* 1O processing

* Module processing

» Controller

* Other

Library and Header Files

Programs using kernel services must link with the library file I i bapi . i b.

Source code must include the header files | i bapi . h and ker nel . h.

System Designation File

You use the system designation file syst em cnf to reserve memory for stack, tasks and events. The

system reads this file at boot time.

The format of each line of the file is “<KEYWORD> = <CONTENT>". The table below shows the available
keywords. All characters must be uppercase (1 byte alphanumeric) and there must be a space on either
side of the equal sign. (If there is more than one line with the same parameter within a file, the first one

takes precedence.)

Table 2-1: SYSTEM.CNF Overview

Key word Contents Default Minimum
BOOT Device name:\Product number; cdrom:PSX.EXE;1 N/A
version
Example: BOOT = cdrom:\SLUS_123.45;1
STACK Stack pointer value when 0x801FFFOO 0x80010000**
booted
TCB Number of task control blocks 4 1
(hex)*
Example: TCB =5
EVENT Number of event processing 0x10 0

blocks (hex)*
Example: EVENT =5

* The maximum number of task control blocks and event control blocks that you can
allocate is shown by the following formula: TCB * 192 + EVENT * 32 + 544<4096.

** Since 0-OxO000FFFF is reserved as the system area (see the “Physical Memory Map”
section of the “CPU and its Peripherals” chapter in the PlayStation Hardware manual) the
minimum address of the user program work area should be at least 0x80010000.

CONFIDENTIAL

Run-Time Library Overview

2-3

2-4 Kernel Library

System Table Information (ToT)

The kernel uses several types of tables, such as task control blocks and event control blocks. To access
these tables in a uniform manner, system table information is represented by the structure ToT (Table of
Tables), located at address 0x00000100.

Each entry in the ToT is defined by the following structure (defined in ker nel . h) . The member head is a
pointer to the actual table.

struct ToT { /[*system tabl e tabl e*/
unsi gned | ong *head; /*systemtable initial address*/
| ong si ze; /*systemtable size (in bytes)*/
i

The ToT entries are:

Table 2-2: ToT Entries
Entry Corresponding Table
System Reserved
TCBH (pointer to execution TCB)
Task control block (TCB) array
System reserved
Event control block array
-31 System reserved

O~ O N =+ O

The TCB (Task control block) structure contains information about a specific task. (See “Threads” for more
information on using TCBs.) The TCBs are stored in an array, pointed to by the TCB entry of the ToT.

The TCBH structure contains a pointer to the currently executing TCB.

struct TCB { /*task control bl ock*/
| ong st atus; /| *stat us*/
| ong node; / *mode*/
unsi gned | ong reg [NREGS]; /*regi ster save area*/

/*specify with register-specified macro*/

| ong systeni6]; /*system reserved*/

b

struct TCBH { [*task status queue*/
struct TCB *entry; [*pointer to execution TCB*/
long fl ag; [*system reserved*/

s

The ToT can be used as follows:

Example 1: Getting the Pointer to the Execution TCB

struct ToT *t = (struct ToT *)0x100; /* address of ToT */

struct TCBH *h = (struct TCBH *)((t + 1)->head); /* address of TCB status
queue header, which contains a pointer to currently executing TCB */

struct TCB *tcb_exec = (struct TCB*)(h->entry); /* address of execution TCB

*/

Example 2: Getting the Pointer to the Start of the TCB Array
struct TCB *tchb_0 = (struct TCB *)((t + 2)->head;

Example 3: Getting the Pointer to the Start of the Event Control Block Array
struct EvCB *evcb_0 = (struct EvCB *)((t + 4)->head);

See the Run-Time Library Reference for the definition of EVCB.

Run-Time Library Overview CONFIDENTIAL

Descriptors

Kernel Library

When you work with certain system resources such as files or threads, the kernel provides you with
descriptors to refer to the resources. Descriptors are unsigned 32-bit integers, with the following bit

assignments:

Table 2-3: Descriptor Bit Patterns

Bit Number Contents

31-24 Descriptor classification
23-16 Reserved by system
15-0 System table number

The kinds of descriptors available are listed below. Each macro is defined in ker nel . h.

Table 2-4: Descriptor Classification

Macro Class contents Notes

DescTH Thread

DescHW Hardware System internal use
DsckEV Event

DescRC Root counter

DescUEV User-defined flag

DescSW System call System internal use

The normal procedure for keying descriptors to system resources is as follows:

1. Obtaining descriptors.

First call the Open() function provided for each resource. The return value of the function is the

descriptor of that resource.

2. Operation of resources.

Use the descriptor returned by the Open() function to specify the resource and perform the operation

required.

3. Closing descriptors.

After use, close the descriptor with the appropriate Close() function.

Example 1: Thread Descriptor

unsi gned | ong th,

th_new;

th = OpenTh(0x1000, Ox1f f ff 0, 0x00) ;
th_new = OpenTh(0x2000, 0x18ff f 0, 0x00) ;

ChangeTh(th);
ChangeTh(t h_new);
Cl oseTh(th);

Example 2: File Descriptor

unsi gned | ong fd,
char buf[2048];

fd = open("cdrom PSX. EXE; 1", O_ RDONLY) ;

ret = read(fd, buf,

cl ose(fd);

1048);

CONFIDENTIAL Run-Time Library Overview

2-6 Kernel Library

Example 3: Event Descriptor

unsi gned | ong ev;

extern long (*handle)();

ev = OpenEvent (RCnt CNTO, EvSpl NT, EvMII NTR, handl e);
Enabl eEvent (ev);

Di sabl eEvent (ev);

Cl oseEvent (ev);

Callbacks

In libraries (such as libgpu or libsnd) that handle devices using DMA, there is a function for registering
callback functions in the kernel. Callback functions are executed after an event has occurred.

Callback functions are executed in the Callback Context (last out), using their callback stack. This stack is
declared in libetc and is included in the application data area.

The callback function is called automatically when a DMA transfer is completed. You can execute transfer
completion processing by setting a flag in an external variable and issuing an event.

Inhibition of Interrupts

Any functions modifying data within the kernel must be executed in code where interrupts are inhibited. See
the Run-Time Library Reference for information about specific functions.

A section of code in which interrupts are inhibited is called a critical section. Interrupts are inhibited at the
following times:

Immediately following system start. (They are enabled by calling the function ResetCallbacks()).
By calling the function EnterCriticalSection().To re-enable interrupts, call ExitCriticalSection().

Immediately following the start of an event handler. To re-enable interrupts, the handler can call
ReturnFromException() to return to the original context. It can also call ExitCriticalSection(); however, if
an interrupt occurs, control won’t return to the main context but to original interrupt context.

Interrupt Context

We refer to the normal execution of a program as its Main Flow. When an interrupt or exception occurs:

The system saves the contents of the registers in the Execution TCB as the Main Flow Context (see
“Thread Management”). The status after saving is called the Interrupt Context.

Processing begins at address 0x00000080, which contains the jump code to the kernel interrupt
dispatcher, which in turn calls the appropriate routine to handle the interrupt.

When interrupt processing is completed, the contents of the Main Flow Context registers are restored
and execution of the Main Flow resumes.

Functions such as Event Handlers and Callbacks are executed in Interrupt Context (the former uses the
interrupt stack, the latter uses the callback stack). When you write code that executes in Interrupt Context,
keep the following cautions and prohibitions in mind.

Cautions

Halting interrupts for a long time may adversely affect the system. You should design any routine to be
executed in interrupt context so that it completes in the shortest time possible.

Functions that generate internal exceptions (e.g., ExitCriticalSection()) cause destruction of the main
flow context. This destruction may be prevented by using the thread management service to change
the execution TCB.

CONFIDENTIAL

Run-Time Library Overview

Kernel Library 2-7

* ltis possible to return to the Main Flow by executing ReturnFromException() within an Event Handler.
However, since this breaks off the action of the Interrupt Dispatcher and interrupt management returns
to Main Flow as incomplete, device related malfunctions may occur. Use ReturnFromException() only
for error management functions.

Prohibitions
Do not:
* Execute functions that use internal interrupts. If interrupts are not generated, the functions cannot
complete.

* Execute non-re-entrant functions that may be called by the main flow. Most library functions, such as
kernel services, are not re-entrant.

» Execute the function ReturnFromException() from within a callback function.

Kernel Reserved Memory Areas

The kernel uses the first 64K bytes of memory. The addresses that the user may use begin from
0x00010000.

Root Counter Control

The root counter control system provides functions such as time restrictions and timing adjustments--
indispensable features in game programs.

Since the root counter is a timer that automatically generates counter timing, the following three are
provided:

e System clock

» System clock (8 cycles)

* Vertical synch.

A 16-bit target value may be set in each of these counters except vertical synch. Counters count up from
zero and when they reach the target value, the following occurs:

1. Aninterrupt is generated (each counter can be masked).

2. The counter is cleared to zero (counter values capable of search are O to target value -1).

3. The counter starts counting again.

Since the target value of vertical synch is fixed at 1, an interrupt is generated at each vertical blank.
Interrupts trigger counter generation and execute optional functions from the event management service

(this is called an event handler). The value of each counter may be polled. Counter names are defined by
macros, and the counters may be accessed using these macros.

Table 2-5: List of Root Counters

Macro Root Counter Notes

RCntCNTO

RCntCNT1 System clock Target value more than 2
RCntCNT2 System clock (8 cycles) Same as above
RCntCNT3 Vertical synch* Target value is fixed at 1

* halting count is invalid

CONFIDENTIAL Run-Time Library Overview

2-8 Kernel Library

Counter Timing

One tick is approximately equal to 0.03 microseconds when counting by the system clock. In the 8-cycle
mode, 1 tick equals 8 times .03 microseconds (approximately .24 microseconds).

Table 2-6: Counter Timing

Counter Event NTSC PAL Unit

Vertical Sync 1/60 1/50 Second
Horizontal Sync 63.56 64.00 Microsecond
Pixel Display Nx0.0186243 Nx0.01879578 Microsecond

Table 2-7: Pixel Display Timing and Display Width

Display Width N
256 pixels 10
320 8
384 7
512 5
640 4

The root counter uses the hardware counting function. For this reason, disabled interrupts and software
operations calling functions unrelated to counting, such as StopRCnt(), will continue.

The function StopRCnt() will not stop counting. This function uses the RentMdINTR macro for halting
creation of interrupts for counters allowed interrupts. In the same way, the StartRCnt() function only allows
interrupts; it does not affect counting.

Mode

For each counter the following modes may be set. Modes are defined by macros. The macros in
Tables 2-9, 2-10, and 2-11 below can be set by logic.

Table 2-8: Root Counter Mode (1)

Macro Contents
RCntMdINTR Interrupt permitted
RCntMdNOINTR Interrupt prohibited (polling only)

Table 2-9: Root Counter Mode (2)

Macro Object root counter Types of counter
RCnDtMdSP RCntCNTO,1 (Use prohibited)
(Default)
RCntCNT2 System clock, 8 cycles
RCntCNT3 Vertical blanking
RCntMdSC RCntCNTO,1 System clock
RCntCNT2,3 Not valid

Run-Time Library Overview CONFIDENTIAL

Kernel Library 2-9

Table 2-10: Root Counter Mode (3)

Macro Contents
RCntMdFR (default) Normal count
RCntMdGATE Valid gate condition

Gate
Each counter will count up only when a condition called gate occurs.

Table 2-11: Root Counter Gate Condition

Root counter Gate conditions

RCntCNTO Not during horizontal blanking
RCntCNT1 Not during vertical blanking
RCntCNT2,3 None (usual time count)

Status Immediately After Kernel Starts

All counters are stopped immediately after activating the kernel. Immediately after the kernel starts all of the
counters are stopped or free running. Thus, when they are used they must always be initialized. Also,
depending on the service and the library, it may be that the user has to initialize the root counter before
use.

Root Counter and Critical Section

A counter interrupt cannot occur within a critical section.

Use of the Root Counter by the Kernel

The kernel will use the root counter in the following circumstances. When using the pertinent service, reset
the root counter to the state specified by the kernel.

Obtaining Controller Button Status

Use root counter 3 (vertical blanking) to obtain the status of the controller button. The state of the button
cannot be read when root counter 3 is stopped or has not been initialized.

Events

An event is either a CPU exception or an interrupt from an external device. Since events can occur
asynchronously with the execution of the main program, there are two main methods of dealing with
events:

* Polling to determine whether an event has occurred and, if so, executing some code appropriately.
» Installing an event handler that the system executes automatically when the event occurs.

The system maintains a 4K interrupt stack (last out) within the memory area reserved for the kernel.
Handlers execute in Interrupt Context (last out), using the interrupt stack.

GetSysSp() obtains the highest address of an interrupt stack area.

CONFIDENTIAL Run-Time Library Overview

2-10 Kernel Library

Cause Descriptor and Type of Event

An event is specified by two 32-bit integers called the cause descriptor and event type.

Table 2-12: Cause Descriptor (Kernel Library Related Only)

Cause descriptor Contents Event type
RCntCNTO Root counter interrupt EvSpINT
RCntCNT1 Root counter interrupt EvSpINT
RCntCNT2 Root counter interrupt EvSpINT
RCntCNT3 Root counter interrupt EvSpINT

File descriptor File input/output EvSpEIO
Same as above File close EvSpCLOSE
HwCdRom CD-ROM decoder interrupt EvSpUNKNOWN*
HwSPU SPU interrupt EvSpTRAP
HwGPU GPU interrupt EvSpTRAP
HWPIO Extension parallel port interrupt EvSpTRAP
HwSIO Extension serial port interrupt EVvSPTRAP
HwCPU Exceptions EvSpTRAP
DescUEV I m User-defined event (m=0~0xffff) Optional

*Other events are described in the individual libraries.
To install an event handler, you call OpenEvent(), passing in the following parameters:

» The cause descriptor (the cause of the event).

e The event type.

e The event mode.

* The address of the handler function.

If the call to OpenEvent() succeeds, it returns a 32-bit event descriptor that you use to identify the event to

other functions such as EnableEvent(). The system keeps track of information about the event in an event
control block structure:

struct EvCB { /*event control bl ock*/
unsi gned | ong desc; / *cause descriptor*/
| ong status; [* status*/
| ong spec; [*event type*/
| ong node; / * mode*/
(long *FHandl er) (); /*function format handl er*/
| ong system[2]; [*system reserved*/

b

Event Handler
An event handler is a function that is called when an event is triggered.

When the event occurs, the registers are saved and the handler begins executing. (Event handlers execute
on an interrupt stack reserved in the kernel). When the handler completes its processing, it calls
ReturnFromException(), which restores the registers and returns to the previous context.

Further, it is possible to permit an interrupt with the ExitCriticalSection() function, to avoid returning to the
source of the interrupt and to make that routine the main flow as is. In this case, the user must provide their
own stack, allocated before the interrupt. The stack can be changed with the SetSp() function.

Run-Time Library Overview CONFIDENTIAL

Kernel Library 2-11

Event Status

An event can have one of four possible statuses. Prior to opening an event, its status is EVSTUNUSED. After
opening an event with OpenEvent(), its status is EVSTWAIT. After calling EnableEvent(), the status becomes
EvStACTIVE; that is, the even may occur.

DisableEvent() switches EVSIACTIVE and EVStREADY event states to an EVSIWAIT state. Once in the
EVSIWAIT state, the next event activated by EnableEvent() must be in the EVStACTIVE state. The previous
state is not saved.

Table 2-13: Event Conditions

Macro Contents Generation
EvStUNUSED Not opened Prohibited
EVSIWAIT Event generation prohibited Prohibited
EvStACTIVE Event not yet generated Possible
EVStALREADY Event already generated Prohibited

Mode

Events can have two different modes, which you specify when opening the event. With EVMdINTR, you
specify a handler function to be called when the event occurs. With EYMANOINTR, you don’t specify a
handler and must test to see whether the event as occurred.

Table 2-14: Event Modes

Macro Status after generation Handler function
EVMAINTR EVStACTIVE Active
EVMdNOINTR EVStALREADY Not active

Event Creation

All applicable enabled events are switched over to the EVStALREADY state based on the source
descriptors and event type specified when the DeliverEvent() function is executed. Events in EVMdINTR
mode are handled by the event handler within the DeliverEvent() function.

Clearing an Event

Clearing an event means switching its state from EvStALREADY to EVStACTIVE. This may be done by
calling UnDeliverEvent() or TestEvent().

UnDeliverEvent() takes a source descriptor and an event type, and clears all applicable events.

TestEvent() takes an event descriptor; if a corresponding event is in the EVStALREADY state, it is switched
to EvStACTIVE. An event must be cleared with UnDeliverEvent() before it is reissued.

CONFIDENTIAL Run-Time Library Overview

2-12 Kernel Library

User-Defined Event

A user may define events using the DescUEV macro.
Del i ver Event (DescUEV| ny_event _num ny_event _spec);

A user-defined event descriptor indicated by the number my_event_num and class my_event_spec may be
called with this macro.

| ong ev;

ev = OpenEvent (DescUEV| ny_event _num nmny_event _spec, EvMINO NTR, NULL);

is used by WaitEvent() and TestEvent(). The event handler is started when the third argument of
OpenEvent() is EVMAINTR and the fourth argument is not NULL.

Threads

Threads allow an application to have multiple flows of control. They provide a form of multi-tasking in which
contexts can be switched by calling a switching function. This feature may also be used for changing
context at the time of an interrupt.

Context and TCB

The thread context consists of the complete contents of the registers. The context is stored in a data
structure called a task control block (TCB). To switch threads, you store the current thread’s context in a
TCB and then assign the contents of another TCB to the registers.

The context at any given time will be stored in the execute TCB if triggered by the generation of an interrupt
or an explicit function call. The execute TCB is pointed to by the task status queue (TCBH).

For registers, please refer to the section on Register Specification Macros on page 2-13 or to the
PlayStation™ Hardware Guide.

Status Immediately After Kernel is Started
When the kernel starts, the task control block (TCB) array is allocated and the zero element is opened with
OpenTh() and linked in the task status queue as the execution TCB. The default thread’s descriptor is:
DescTH| 0x0000=0xf f 000000

Thread Open and Switching Execution TCB
TCBs may be run using the ChangeTh() function, while allocating the second and later TCBs from the
OpenTh() function.

unsi gned | ong new_t h;
new_t h=0CpenTh(0x80020000, Ox1f f f f 0, 0x00) ;
ChangeTh(new_t h);

When the ChangeTh() function is called:

e A software interrupt is issued, which causes a jump into an internal kernel interrupt dispatch routine.
Other interrupts are not allowed at the same time.

« Context of the ChangeTh() function being executed is shunted into the previously executed TCB.

» The specified TCB is linked to the task status queue

* The context read from the execution TCB is reopened when the interrupt dispatch routine finishes.

Run-Time Library Overview CONFIDENTIAL

Kernel Library 2-13

By changing the newly-executed VO register value of the context saved in the previously executed TCB, the
return value of ChangeTh() may change when execution is recommenced. From this point on, it is possible
to transmit information from the thread space.

Interrupts and TCB

The context at the time of interrupt is stored in the TCB that is currently being executed by the interrupt
handler. This content will be kept even during a return from the handler to the main flow and will be saved
until the next interrupt.

TCB Status

The status of a TCB can be TcbStUNUSED or TcbStACTIVE. When a thread is opened with OpenTh(), its
status becomes TcbStACTIVE and you may execute the TCB with ChangeTh().

Table 2-15: TCB status

Macro Status
TcbStUNUSED Not used
TcbStACTIVE Execution possible

Register Specification Macros

This table shows the macros used to specify the R3000 registers (defined in asm h).

Table 2-16: Register-Specified Macro

Macro (1) Macro (2) Contents

R_ZERO R_RO 0 fixed

R_AT R_R1 Assembler only

R_VO R_R2 Return value

R_V1 R_R3 Return Value (for double type)
R_AO R_R4 Argument #1

R_A1 R_R5 Argument #2

R_A2 R_R6 Argument #3

R_A3 R_R7 Argument #4

R_TO R_R8 Function-internal work
R_T1 R_R9 Function-internal work
R_T2 R_R10 Function-internal work
R_T3 R_R11 Function-internal work
R_T4 R_R12 Function-internal work
R_T5 R_R13 Function-internal work
R_T6 R_R14 Function-internal work
R_T7 R_R15 Function-internal work
R_SO R_R16 Function-internal save
R_S1 R_R17 Function-internal save
R_S2 R_R18 Function-internal save
R_S3 R_R19 Function-internal save

CONFIDENTIAL Run-Time Library Overview

2-14 Kernel Library

Macro (1) Macro (2) Contents

R_S4 R_R20 Function-internal save

R_S5 R_R21 Function-internal save

R_S6 R_R22 Function-internal save

R_S7 R_R23 Function-internal save

R_T8 R_R24 Function-internal save

R_T9 R_R25 Function-internal save

R_KO R_R26 Kernel only #0

R_K1 R_R27 Kernel only #1

R_GP R_R28

R_SP R_R29 Stack pointer

R_FP R_R30 Frame pointer

R_RA R_R31 Return previous address

R_EPC Interrupt return address

R_MDHI Multiplication/division Register (high)
R_MDLO Multiplication/division Register (low)
R_SR Status register

R_CAUSE Cause register

I/0 Management

The PlayStation supports low-level access to files and logical devices. Structures used by the system for
input/output are defined by sys/fil e. h.

The following devices are supported:

Table 2-17: 10 Devices

Device name Contents Example of file designation
cdrom CD-ROM file system cd- rom PSX. EXE; 1
bu Memory Card file system bu00: ABCD12345

Each device has a data access unit called its block size. All data access is done in multiples of the block
size. If there is a fraction in the specified size, it is discarded.

Run-Time Library Overview CONFIDENTIAL

Kernel Library 2-15

CD-ROM File System
The PlayStation CD-ROM file system conforms to the level 1 format of ISO-9660. File system details are:

Table 2-18: CD-ROM File System (ISO 9660 Level 1)
Device name cdrom

File format <basename>.<extension name>;<version number>
<base name>is 8 letters; <extension>up to 3 letters.
Only English capital letters, numbers and “_" (underscore)
may be used.

Directory name format <base name>
<base name> is 8 letters.
Only English capital letters, numbers and “_"(underscore)

may be used.
Directory hierarchy format Maximum levels in the directory is 8. No root name
File arrangement Physically arranges all file sectors so they are contiguous.
Block size 2048 bytes

The list of files and directories is only supported as far as it can be stored in one sector (2048 bytes). With
standard names (8.3), this allows for up to 45 directories and 30 files per directory. When using short
names, it's possible to store more information. Note: These limitations can be worked around by having
the program keep track of its own files and not using CdSearchFile().

Memory Card File System

TheMemory Card file system manages the files on the removable Memory Card used for saving game data.
(Mounting and initialization is performed by libcard BIOS calls). Details of the file system are as follows:

Table 2-19: Memory Card File System

[tem Description
Device name buxyY
X: port (0: A port, 1: B Port)
Y: Extension connector number (1-) or O

File format <base name>
<base name> ASCII character string to a maximum of 20
bytes.
Extension cannot be used.

Directory structure None

Block size 128 bytes

Standard I/0 Stream

The standard 1/O stream reserves File Descriptors 0 and 1.

On the game unit, the standard I/O stream is assigned to a NULL device. In the development environment,
the standard input stream is assigned to a NULL device and the standard output stream is assigned to
Debug Message Window #0.

CONFIDENTIAL Run-Time Library Overview

2-16 Kernel Library

Module Control

Functions are provided to allow you to load and execute application modules.
An execution file conforms to the PlayStation EXE format. It includes:

* Code and data linked to fixed addresses

e Astarting address

* Agp register initial value

* |Initial value data area starting address and size

Prior to executing the module, the stack area must be explicitly defined, or the current execution context
will be used as is.

The execution file is divided into the following three sections:

Figure 2-1: Execution File Memory Map

low
Header (2048 bytes) starting with XF_HDR
text section
2048 byte
data section (initial value data) multiples
high
Execution File Data Structure
The execution file is structured as follows:
struct EXEC { /*execution file information*/
unsi gned | ong pcO; /*execution start address*/
unsi gned | ong gpo; /*gp register initial value*/
unsi gned | ong t_addr; /*text and data section | ead address with
initial value*/
unsi gned | ong t_si ze; /*text and data section size with initial
val ue. */
unsi gned | ong d_addr; /* systemreserved */
unsi gned | ong d_si ze; /* systemreserved */
unsi gned | ong b_addr; /*data section | ead address with no initial

val ue. Exec() clears this section; however,
if b addr is zero, the section doesn’t
exist, so it doesn't get cleared.*/

unsi gned | ong b_si ze; /*data section size with no initial value*/

unsi gned | ong s_addr; /*stack area | ead address (user specified).
Exec() substitutes s_addr+s_size for stack
pointer, unless s_addr is zero. */

unsi gned | ong s_si ze; /*stack area size (user specified)

unsi gned long sp, fp, gp, ret, base; [*register shunt area for
executing Exec()*/

I

Run-Time Library Overview CONFIDENTIAL

Kernel Library 2-17

The execution file header is structured as follows:

struct XF_HDR { /*execution file header */
char key[8}; / *key code*/
unsi gned | ong text; /*position of text section within file */
unsi gned | ong dat a; /*position of data section within data file */
struct EXEC exec; /*execution file infornation*/
char title[60]; /*1icense code */
i

Controller Features

Libapi provides a low-level interface to regulate certain controllers on the PlayStation's main input device.
Applications may directly process received data; each type of controller may be identified dynamically.

Initialization

The normal procedure for initializing the controller is shown below:

I ni t PAD(buf 0, |enO, bufl, |enl);
Start PAX() ;

InitPAD() sets up two buffers bufO and buf1 to receive data from the controllers, and specifies their
maximum input lengths, len0 and len1. StartPad() begins reading the controllers, triggered by the vertical
blank interrupt.

The presence or absence of the device, as well as its state, may be determined by testing the input buffer's
contents.

Buffer Data Format

Data stored in the receive buffer has the following format.

Table 2-20: Summary of Terminal Types

Terminal Type Controller Name Main Controller Model Number
1 Mouse SCPH-1030

2 16-Button Analog SLPH-00001 (Namco)

3 Gun Controller SLPH-00014 (Konami)

4 16-Button SCPH-1080, 1150

5 Analog Joystick SCPH-1110

6 Gun Controller SLPH-00034 (Namco)

7 Analog Controller SCPH-1150

8 Multi Tap SCPH-1070

CONFIDENTIAL Run-Time Library Overview

2-18 Kernel Library

Table 2-21: Mouse

Offset

Contents

Received result 0x00:Success, Other: Failure
Upper 4 bits; 0x1

Lower 4 bits: Number of received data bytes/2
Button Status: 1: Release, 1: Push

Movement Value X Direction (-128~127)
Movement Value Y Direction (-128~127)

Table 2-22: 16-Button Analog

Offset

Contents

0~128~255

~N O O

Received result 0x00: Success, Other: Failure
Upper 4 Bits: 0x2

Lower 4 Bits: Number of received bytes/2
Button status 1: Release, 0: Push

Revolution area

| Button 0~255
[l Button 0~255
L Button 0~255

Table 2-23: Gun Controller (Konami)

Offset

Contents

0
y

2,3

Received result 0x00: Success, Other: Failure
Upper 4 bits: 0x3

Lower 4 bits: Number of received data bytes/2
Button Status 1:Release, 0: Push

Table 2-24: 16-Button

Offset

Contents

0
1

2.3

Received result 0x00: Success, Other: Failure
Upper 4 bits: Ox4

Lower 4 bits: Number of received data bytes/2
Button Status 1: Release, 2: Push

Run-Time Library Overview

CONFIDENTIAL

Kernel Library 2-19

Table 2-25: Analog Joystick

Offset Contents
0 Received result 0x00: Success, Other: Failure
1 Upper 4 bits: 0x5

Lower 4 bits: Number of received data bytes/2
Button status 1: Release, 0: Push

Position X Direction (Right stick) 0~128~255
Position Y Direction (Right stick) 0~128~255
Position X Direction (Left stick) 0~128~255
Position Y Direction (Left stick) 0~128~255

w

~N o oA~

Table 2-26: Gun Controller (Namco)

Offset Contents
0 Received result 0x00: Success, Other: Failure
1 Upper 4 bits: Ox6

Lower 4 bits: Number of received data bytes/2
Button status 1: Release, 0: Push

Position X Direction Lower byte

Position X Direction Upper byte

Position Y Direction Lower byte

Position Y Direction Upper byte

w

~N oo OB~ DN

Table 2-27: Analog Controller

Offset Contents
0 Received result 0x00: Success, Other: Failure
1 Upper 4 bits: Ox7

Lower 4 bits: Number of received data bytes/2
Button status 1: Release, 0: Push

Position X Direction (Right stick) 0~128~255
Position Y Direction (Right stick) 0~128~255
Position X Direction (Left stick) 0~128~255
Position Y Direction (Left stick) 0~128~255

w

~N o o0~

CONFIDENTIAL Run-Time Library Overview

2-20 Kernel Library

Table 2-28: Multi Tap Received Data Configuration

Offset Contents
0 Received result 0x00: Success, Other: Failure
1 0x80
2 Received result 0x00: Success, Other: Failure
3 Upper 4 bits: Terminal types

Port A Lower 4 bits: Number of received data bytes+2
4-9 Received data
10 Received result 0x00: Success, Other: Failure
11 Upper 4 bits: Terminal types

Port B Lower 4 bits: Number of received data bytes+2
12-17 Received data
18 Received result 0x00: Success, Other: Failure
19 Upper 4 bits: Terminal types

Port C Lower 4 bits: Number of data bytes+2
20-25 Received data
26 Received result 0x00: Success, Other: Failure
27 Upper 4 bits: Terminal types

Port D Lower 4 bits: Number of receive data bytes+2
28-33 Received data

Table 2-29: Button status bit assignments

Bit D15 D14 D18 D12 D11 D10 D9 D8
16-button — J — T ST SEL
Analog Controller — J — T ST R3 L3 SEL
Analog joystick = d — T ST SEL
16-button analog — L — T ST

Mouse

Gun controller (Konami) ST

Gun controller (Namco) A

Bit D7 D6 D5 D4 D3 D2 D1 DO
16-button O X 0 i R1 L1 R2 L2
Analog Controller O X 0 iy R1 L1 R2 L2
Analog joystick O X 0 &y R1 L1 R2 L2
16-button analog A B R

Mouse Left Right

Gun controller (Konami) TRG X

Gun controller (Namco) B TRG

(All bits 1: released, 0: pressed)

The upper 4 bits of the first byte in the buffer are the terminal type, the lower 4 bits are half the value of the
number of bytes received from the terminal (stored in or after the 3rd byte of the buffer.) See the terminal
documentation for the physical arrangement and correspondence of each button and channel.

Run-Time Library Overview CONFIDENTIAL

Kernel Library 2-21

Kanji Fonts

The PlayStation kernel ROM includes 16 dot x 16 dot 2-value bitmap kaniji fonts. Font data must not be
stored consecutively in memory to accommodate memory capacity. Use the service function to obtain the
starting address of the data for each character.

Table 2-30: Kanji Fonts

[tem

Description

Data Format

Contents

Code System
Access Method

16 dot x 16 dot 2 value bitmap
Character size is 15 dot x 15 dot

JIS 1st standard kanji and non-kaniji; gothic type non-kaniji have
a top space (0x2121) Refer to the codeview samples in
\psx\kanji\sjiscode for a list of usable fonts and the fonts
themselves.

Shift-JIS
The starting address in ROM of the applicable font pattern may

be obtained from the shift-JIS code given to the service function.
With that information, the font pattern may be accessed directly.

Data Format

In the figure below, the byte of the upper left of the pattern is first, followed by the byte on the upper right.
The most significant bit (MSB) faces left.

Table 2-31: Font Data Format

#0
#2

#30

#1
#3

#31

CONFIDENTIAL Run-Time Library Overview

2-22 Kernel Library

Usage Example

In the following sample program, the function _get_font() returns a font pattern corresponding to the
specified shift-JIS code. This pattern is in a format that can be transferred to VRAM as a 16-bit texture.

Example: Getting a Kanji Font

unsi gned | ong _get (char *sjis)

{

unsi gned short sjiscode;

sjiscode = *sjis << 8 | *(sjis+l);

return KronRRawAdd(sjiscode); [/* get kanji font pattern address */
}

#def i ne COLOR 0x4210
#defi ne BLACK 0x3000

void _get_font (char *s, unsigned short *data)

{
unsi gned short *p, *d, w
long i,j;
if ((p=(unsigned short *)_get(s))!=-1)
{
d = data;
for (i=0; i<15; i++)
{
for(j=7; j>=0; j--)
*d++ = (((*p>>]) &0x01) ==0x01) ?COLOR: BLACK;
for(j=15; j>=8; j--)
*d++ = (((*p>>]) &0x01) ==0x01) ?COLOR: BLACK;
p++;
}
}
el se
{
for (d=data, i=0; i<2*16*16; i++)
*d++ = BLACK;
}
}

Run-Time Library Overview CONFIDENTIAL

Kernel Library 2-23

Memory Allocation

There are three systems of memory allocation: a ROM-based version (malloc), a RAM-based version
(malloc?), and a high-speed RAM-based version (malloc3).

There is a bug in the malloc system in which the area allocated cannot be completely released in free(). This
bug was fixed in malloc2. (Since malloc is part of the ROM, it cannot be corrected and is left in order to
maintain compatibility.) malloc3, which improved upon the speed of malloc2, was added in Library 4.0.

Note: all of these functions allocate memory blocks based on first fit rather than best fit. In some cases,
developers may wish to write their own memory allocation routines.

Table 2-32: Memory Card allocation functions

Name LIBAPI function LIBC/C2 function
Version which calls ROM routine InitHeap() malloc()
(malloc system) calloc()
realloc()
free()
RAM-based version InitHeap?2()
(malloc2 system) malloc2()
realloc2()
calloc2()
free2()
High-speed RAM-based InitHeap3()
version (malloc3 system) malloc3()
realloc3))
calloc3()
free3()

The table below shows a performance comparison between the three memory allocation systems, in terms
of speed of operation and size of code.

Table 2-33: Performance comparison between memory allocation functions

Speed
Code size Slow Fast
Large malloc? system
malloc3 system
Small malloc system

CONFIDENTIAL Run-Time Library Overview

2-24 Kernel Library

Run-Time Library Overview CONFIDENTIAL

Chapter 3:
Standard C Library

Table of Contents

Overview
Library and Header Files

CONFIDENTIAL

3-3
3-3

Run-Time Library Overview

3-2 Standard C Library

Run-Time Library Overview CONFIDENTIAL

Standard C Library 3-3

Overview

The C standard libraries are a subset of the K & R-based C standard libraries, including functions such as

character functions and memory operations .

There are two versions of the standard C libraries:

Library and Header Files

libc accesses library routines in the kernel ROM. This provides a small size advantage, since no
additional code needs to be linked with your application. However, libc routines are slower than libc2
routines, because ROM code is not cacheable.

libc2 links with your application. It provides a speed advantage, because the code is cacheable.

The standard C library filesare I i bc. i band i bc2.1ib. To use standard C routines, you must link
with one of these files.

The following header files declare the routines in the C standard library. The Run-Time Library Reference
describes the functions in the standard C library and which header file must be included for each one.

Table 3-1: Header Files

abs.h
assert.h
convert.h
ctype.h
malloc.h
memory.h
rand.h
setimp.h
stdarg.h
stddef.h
stdlib.h
strings.h
gsort.h
sys/types.h

CONFIDENTIAL

Run-Time Library Overview

3-4 Standard C Library

Run-Time Library Overview CONFIDENTIAL

Chapter 4:
Math Library

Table of Contents

Overview
Library and Header Files

Floating-Point Numbers

Error Processing
Error Types
Internal Processing at the Time of an Error
Error Event
Error Variable

CONFIDENTIAL

Run-Time Library Overview

4-2 Math Library

Run-Time Library Overview CONFIDENTIAL

Math Library 4-3

Overview

The Math library provides a floating point operation package and K & R-based standard C library math
functions.

Library and Header Files
To use the Math library file, your application must link with the file | i bmat h. |'i b.

Your source code should include the header files | i bmat h. hand i m ts. h.

Floating-Point Numbers

The math library supports IEEE754 standard single-precision floating-point numbers (float) and double-
precision floating-point numbers (double). It also has an internal floating-point arithmetic operation package.

The PlayStation hardware doesn’t support float and double operations directly, because the CPU has no
floating-point coprocessor. By linking mathlib with your application, it is possible to use the float and double

types.

Table 4-1: Float Format
ltem Specification
Size 4 bytes
Significant digit count 6 decimal digits
Overflow limit value 2.0"128 = 3.4e38
Underflow limit value 0.5"126 = 2.2e-38

Table 4-2: Double Format

[tem Specification

Size 8 bytes

Significant digit count 15 decimal digits
Overflow limit value 201024 = 1.8e308
Underflow limit value 0.5"1022 = 2.2e-308

Error Processing

Events are used to report errors in floating-point operations. Error status recording by C standard style
external variables is also supported.

Error Types

Math library functions are used to test the range of arguments. These tests are performed on the functions
whose specifications cover the range of argument values. If an inappropriate value is detected, the
response “area error” (EDOM) is generated.

If the results exceed the area of expression in an application which uses internal functions and arithmetic
operators, the response “range error” (ERANGE) is generated.

CONFIDENTIAL Run-Time Library Overview

4-4 Math Library

Internal Processing at the Time of an Error

For any area and range errors, notice is given by the assignment of an error code to an event and external
variables.

The result of an operation is an unsigned infinite value, so that operation can be carried on wherever
possible. The following are positive infinite bit patterns:

* Floating-point value: 0x7F800000

* Double-precision value: 0x7FFO000000000000
The following are negative infinite bit patterns:

* Floating-point value: OxFF800000

* Double-precision value: OxFFFO000000000000
The following are return values for division by zero:
* NaN

* Floating-point value: Ox7FFFFFFF
* Double-precision value: Ox7FFFFFFFFFFFFFFF

or
e -NaN

* Floating-point value: OxFFFFFFFF
* Double-precision value: OxFFFFFFFFFFFFFFFF

(NaN is not a numerical value, but a bit pattern reserved by the operation subroutine to report an error. A
normal double-precision variable does not store the same bit pattern as NaN. Thus, subjecting NaN to
floating-point operation cannot provide correct results.)

Error Event

An error in a math library function causes an event with cause descriptor SWMATH. Thus, an overflow and
division by zero can be detected and a corresponding error generated.

Error Variable

The variable math_errno for storing error codes is defined in | i brmat h. | i b and declared as extern in the
header file | i bmat h. h; it is initialized to zero. When an error arises in the library, however, one of the
constants EDOM or ERANGE (defined in sys/errno.h) is stored in math_errno. This variable is not
automatically reset to zero; you must explicitly reset it after error processing.

Table 4-3: Error Notificaton

Error math_errmo Event value Cause descriptor Type
Area error EDOM SWMATH EvSpEDOM
Range error ERANGE SWMATH EvSpERANGE

Run-Time Library Overview CONFIDENTIAL

Chapter 5:
Memory Card Library

Table of Contents

Overview

Library and Header Files

Memory Card

BIOS

Hardware
Events

Testing for Card Presence and Testing Logical Formats
Unconfirm Flags

Card Test

Use with the Multi Tap

File System

Realtime Access

Rules for Use of Memory Card

Other

Abnormal Processing
Terminology

File Names

File Headers

Written Data Contents Protection
Handling Communications Errors

Coding Notes
Known Bugs

CONFIDENTIAL

5-3

5-3
5-3
5-3

5-4
5-5
5-5
5-7

5-7
5-8

5-8
5-8
5-9
5-9
5-9
5-10
5-11

5-11
5-11
5-11

Run-Time Library Overview

5-2 Memory Card Library

Run-Time Library Overview CONFIDENTIAL

Memory Card Library 5-3

Overview

The Memory Card library provides functions which make smooth access to the Memory Card in a realtime
environment possible. It also performs data reading and writing and calls the Memory Card BIOS service.

Library and Header Files
Programs that use the Memory Card library must link with the file | i bcard. | i b.

The Memory Card library has no unique header file. The header files | i bapi . hand sys/fil e. h must be
included.

Memory Card

The Memory Card is a memory device that saves data after a reset or power-off. The Memory Card may be
inserted or removed while the power is on.

Hardware

The basics of Memory Card hardware are as follows:

Table 5-1: Memory Card Specifications

Feature Specification(s)

Capacity 120 Kbytes at format
(accessed in 128-byte sectors)

Communication Configuration Synchronous serial communication sharing
controller port

Access Speed 1. Cannot access for 20 ms after reading 1 sector

2. Maximum continuous reading speed is about
10 Kbyte/sec.

Other May insert/remove without turning power off
100,000 reads guaranteed

Events

The Memory Card library uses the following two source descriptors. Also, the Memory Card library does
not use internal event descriptors.

Table 5-2: Events Associated with the Memory Card

Source descriptor Event class Meaning

HwCARD EvSpIOE Processing complete
EvSpERROR Card no good
EvSpTIMOUT No card

CONFIDENTIAL Run-Time Library Overview

5-4 Memory Card Library

Source descriptor Event class Meaning

SwCARD EvSpIOE Processing complete
EvSpERROR Card no good
EvSpTIMOUT No card
EVSpNEW New card or uninitialized card

Note: SWCARD/EvVSpNEW has one of two meanings, depending on the function that issued
the input/output request.

Automatic clearing of events relating to HwCARD
Events related to the descriptor HWCARD are automatically cleared by every vertical sync interrupt.

Functions which wait for a vertical interrupt, such as libgpu VSync(), etc., interpose themselves to perform
event generation tests, and so run the danger of not being able to detect event generation.

BIOS

Services such as checking the Memory Card connection, logical format testing, accessing in sector units
(128 bytes), etc., are provided by the BIOS.

In order to support concurrent controller reading and the accessing of two AB connectors, the BIOS
accesses the card at each of two vertical blanks. One sector, 128 bytes of data, may be read in 1 access.
Access using BIOS is as follows:

Table 5-3: Memory Card BIOS

Feature Description

Start Timing After a vertical blanking interrupt, controller reading
occurs, the card connection is checked and then the
hardware is checked.

Sending and receiving of data is driven by receiving
interrupts in units of bytes.

Effective Speed Effective speed 30 sectors/sec = 3.75 Kbyte/sec
CPU Load 2.5% when reading continuously from 2 cards
3.2% when writing continuously to 2 cards

Testing for Card Presence and Testing Logical Formats

The procedure for testing in the BIOS for the presence of a Memory Card and for logical format is as
follows:
1. Test for card presence using _card_info().

If an IOE event has occurred, a card whose connection has already been confirmed remains
connected. Go to (5).

If a NEWCARD event has occurred, a card which was not confirmed by _card_clear() after connection
is connected. Go to (2).

If a TIMOUT event has occurred, no card is connected. No more operations are necessary. A
communication error is possible, so perform a retry.
2. Perform a confirmation operation using _card_clear().

Usually there is no failure. If a failure occurs, either the card was removed or a communication error
occurred. In the case of failure, return to (1) and perform a retry.

Run-Time Library Overview CONFIDENTIAL

Memory Card Library 5-5

3. Test logical format using _card_load().
If an IOE event has occurred, formatting is completed. Go to (5).
If a NEWCARD event has occurred, formatting has not been performed. Go to (4).
In other cases, either the card was removed or a communication error occurred. In these cases, return
to (1) and perform a retry.

4. Perform logical format using format().
If formatting ends normally, go to (5). In other cases, either the card was removed or a communication
error occurred. In such cases, return to (1) and perform a retry.

5. Perform input/output using the file system.

Unconfirm Flags

Inside the card there is a bit switch called the unconfirm flag. This bit is set if the card is inserted in its slot,
and is cleared by _card_clear(). This flag provides a means for detecting card replacement. In order to
prevent erroneous access, the default is that data cannot be read from or written to a card with this flag
set. Any attempt to read or write causes an error. The flag may be accessed after explicitly clearing it with
_card_clear().

If you want to create an error for testing, etc., the _new_card() function masks the default test parameters
in order to ignore the unconfirmed flag and allow access. This is a function which does not require normal
access through the filesystem, so it is different from other libcard functions.

Card Test

Here is a list of sample code for testing cards. See the following section “File System” for the events used.

unsi gned | ong evO0, evl, ev2, ev3;
unsi gned | ong ev10, evll, evl2, evl3;

mai n()

{
ev0 = OpenEvent (SWCARD, EvSpl CE, EvMINO NTR, NULL);
evl = OpenEvent (SWCARD, EvSpERROR, EvMINO NTR, NULL);
ev2 = OpenEvent (SWCARD, EvSpTI MOUT, EvMINO NTR, NULL);
ev3 = OpenEvent (SWCARD, EvSpNEW EvMINO NTR, NULL);
evl10 = OpenEvent (HWCARD, EvSpl OE, EvMINO NTR, NULL);
evll = OpenEvent (HWCARD, EvSpERROR, EvMINO NTR, NULL);
evl2 = OpenEvent (HWCARD, EvSpTI MOUT, EvMINO NTR, NULL);
evl3 = OpenEvent (HWCARD, EvSpNEW EvMINO NTR, NULL);
Padl ni t (0);
I ni t CARD(1);
Start CARD() ;
_bu_init();
test _card();

}

test_card()

{
long ret;
_card_i nfo(0x00); /* deliver a TEST CARD request */
ret = _card_event(); [/* get the result */
if(ret==1 || ret==2)) /* NO CARD or Conmunication error */

goto skip;

if(ret==3) { /* if NEWCARD, call _card_clear() */
_clear_event();

CONFIDENTIAL Run-Time Library Overview

5-6 Memory Card Library

_card_cl ear (0x00); /* clear NEW CARD FLAG */
ret = card_event(); /[* wait events */

}

_clear_event();

card| oad(0x00); /* deliver a TEST FORMAT request */

if(ret==3) { /* if NEWCARD, call format() */
/* put a nmessage to the operator */
ret = format("bu00:"); /* synchronous function */

if(ret==1)
Fnt Print ("\nDONE\ n");
el se { /* error happened in format () */
FntPrint ("\nERROR | N FORMATTI NG n");
goto skip;
}
}
/* put i/o requests */
return 1;
ski p:
return O;
}
_card_event ()
{
while(1) {
if(TestEvent(ev0)==1) { /* IOE */
return O;
i f(TestEvent(evl)==1) { /* ERROR */
return 1;
}
i f(TestEvent(ev2)==1) { /* TIMEQUT */
return 2;
}
i f(TestEvent(ev3)==1) { /* NEW CARD */
return 3;
}
}

_clear_event ()

{
Test Event (ev0);
Test Event (evl);
Test Event (ev2);
Test Event (ev3);

_card_event _x()

{
while(1) {

i f(TestEvent(ev10)==1) { /* ICE */
return O;

}

if(TestEvent(evll)==1) { /* ERROR */
return 1;

}

i f(TestEvent(ev12)==1) { /* TIMEQUT */
return 2;

Run-Time Library Overview CONFIDENTIAL

i f(Test Event (ev13)==1) {

return 3;
}
}
}
_clear_event _x()
{
Test Event (ev10);
Test Event (ev1l);
Test Event (ev12);
Test Event (ev13);
}

Use with the Multi Tap

Memory Card Library 5-7

/* NEW CARD */

When switching between multiple Memory Cards connected to one Multi Tap, _card_load() must be
executed each time a different Memory Card is accessed.

This is because each port of the PlayStation console has only one directory information buffer and libcard
can only control one directory information for multiple Memory Cards connected to one Multi Tap.

File System

The file system as it relates to the Memory Card is as follows:

Table 5-4: Memory Card File System

Feature Description
Device Name buX0X: Connector number (0 or 1)
File Name ASCII characters, up to 21 characters

Directory Structure

Control Unit: Slot

Number of Slots

Automatic Replacement Sector Function

None

8 Kbyte (64 sectors) --> file size unit
15/card (max. no. of files = 15)

20 replacement sectors/card

Kernel library services which request a file name as an argument may be applied to all bu devices.

File size is given as a parameter during file creation. Afterwards the file size cannot be changed. Size is in
units of slots. During file creation, the file system must combine any fragmented memory regions left after

deleting files and guarantee the needed capacity.

Example: File Deletion and Creation:

/* Driver initialization */

Init CARD(0); /* Does not coexist with controller */

Start CARD() ;
_bu_init();

/* Delete file LO1 on the card in Port A */

printf("delete\n");
del et e(" bu00: LO1");

CONFIDENTIAL

Run-Time Library Overview

5-8 Memory Card Library

/* Create new file LO1, 2 slots long, on card in Port A */

printf("create\n");

i f((fd=open("bu00:L01", O CREAT| (2<<16)))==-1)
printf("error\n");

cl ose(fd);

/* Always cl ose once after creating */

Realtime Access

Device bu assumes operation under a realtime environment and supports non-blocking mode. If the macro
0_NOWAITin sys\file.h is used when open, read() and write() end as soon as an input/output request is
registered in the driver. Completion of input/output is reported by posting an event.

A slot accepts only one input/output request for checking access speed.

Example: Asynchronous Access

_clear_event() and _card_event() have the same contents as the previous example
{sarrpl e()

long fd,i,ret;
fd = open("bu00: LO1", O WRONLY| O_NOMAI T) ;
printf("open=%\n", fd);
for(i=0;i<50;i++) {
cl ear_event ();
while((ret = wite(fd, data, 384))!=0)

printf("wite=%\n",ret);

ret = _card_event();
printf("event=%\n", ret);
if(ret==1)
br eak;

}

cl ose(fd);

Rules for Use of Memory Card

The Memory Card is a resource shared by many applications, so use it according to the rules for sharing.

Abnormal Processing

No standard screen or message is set up to deal with cases of insufficient capacity or detection of an
unformatted card while executing an application. Each application should have an abnormal processing
screen or message designed for it.

Keep the following points in mind during this design process.

1. Always query the user (game-player) when performing logical initialization. Do not use the automatic
initialization function.

2. When a card is not detected, and it is determined that this may limit future operation, always notify the
user (game-player). If possible, ask the user whether it is okay to continue processing.

Run-Time Library Overview CONFIDENTIAL

Terminology

Memory Card Library 5-9

The unit for required memory capacity in the product catalog is block. This is equivalent to the previously-

noted slot (8 Kbytes).

File Names

Use the following structure for file names:

Table 5-5: Memory Card File Names

Bytes Contents Notes
0 Magic Number Always 'B'
1 Region Japan: 'l
North America: 'A'
Europe: 'E' (*1)
2-11 Title SCE product number (*2)
12-20 User/Public Use only non-0x00, Ox2a(“*”), Ox3f(“?”) ASCII

End with Ox00

*1: None are checked by the system
*2: The first disk for multi-disk titles

The SCE product number is decided by our Release Planning Committee (about three weeks before the
master is released), and reported to the responsible parties in each company's sales department. Based on

this, please decide the following.

Example: If the product code is SLPS-00001, the file name's first 12 characters are BISLPS-00001. Always

add zeros to make the numerical portion 5 digits.

File Headers

Put the following headers at the start of each file.

Table 5-6: Memory Card File Header

[tem Size (bytes)
Header 128
Magic number 2 (always “SC”)

Type (see table below)
No. of slots

Text name

Pad

CLUT

Icon image (1)

Icon image (2)

Icon image (3)

Data

;
y

64 (Shift JIS, *1)

28 (All packed in 0x00)

32

128 (16 x 16 x 4 bits)

128 (Type:0x12, 0x13 only)
128 (Type:0x13 only)
Varies (128Byte x N)

*1: Non-kanji and primary standard kaniji only, full-size 32 characters. The end of the

character string terminates at 0x00.

CONFIDENTIAL

Run-Time Library Overview

5-10 Memory Card Library

Table 5-7: Type Field

Type Number of icon images
(automatically replaced animation)

Ox11 1

0x12 2

0x13 3

Written Data Contents Protection

Applications should take precautions to prevent damage to data in the event of a reset or card removal or
power off during data writing.

For example, you can set things up so that data is written in duplicate. Writing is performed reciprocally and
an individual checksum is added for the final byte of each sector. Test checksum when reading, and use
the other data set if an error is detected.

Warning: the file system replacement sector function is only effective on card memory writing errors. The
writing contents guarantee function is not supported by hardware or library.

Example: Sector Checksum

/*

* test check sum for 128byte bl ock
* return 1: XK

* 0: NG

*/

_test_csun{buf)
unsi gned char *buf;

{
long i;
unsi gned char c;
¢ = 0x00;
for(i=0;i<127;i ++)
c "= *buf ++;
i f(*buf==c)
return 1;
return O;
}

/* set check sumto the |ast byte of 128byte bl ock */
voi d _set_csum(unsi gned char *buf)

{
long i;
unsi gned char c;
¢ = 0x00;
for(i=0;i<127;i++)

c "= *buf ++;

*buf = c;

}

/* sample data strucure */
struct SDB {
char nane[8] ;
| ong size, attr, sector, node;

}

/* comon | oad buffer */
unsi gned char | oad_buf[1024];

Run-Time Library Overview CONFIDENTIAL

Memory Card Library

/* get data from Menory Card with checksumtest */

int

{

}

get (l ong num struct SDB *dat a)

long i,fd;

i f((fd=open("bu00:LO1", O WRONLY)) <0)
return O;
mencpy(& oad_buf [0], dat a, si zeof (struct SDB));
set _csum(& oad_buf[0]);
i = wite(fd, & oad_buf[0], 128);
close(fd);

return (i==128)7?1:0;

/* get data from Menmory Card with checksumtest */
int get()

long i,fd;

i f((fd=open("bu00:L01", O RDONLY)) <0)
return O;

i f(read(fd, & oad_buf[0], 1024)!=1024) {
cl ose(fd);
return O;

}

for(i=0;i<8;i++)
if(_test_csum(& oad_buf[128*i])==1)
nencpy(&datali], & oad_buf[128*i], si zeof (struct SDB));
el se
menset (&dat a[i], Oxff, si zeof (struct SDB));
cl ose(fd);
return 1;

Handling Communications Errors

There are cases in which access fails due to static discharge or power source noise even though the card
connection and access program are normal. Test for the presence or absence of a card, writing and
reading with retry (at 1-2 second intervals).

Other

Coding Notes

Consider the following point when coding: Call _new_card() before _card_info() and suppress EvSpNEW

events.

Known Bugs

If read() or write() is issued immediately after open(), an error occurs. When creating a file using open(),
make sure you call close() to close the file.

In asynchronous access using read(), the file pointer is updated by 128 bytes too few. It must be
corrected using Iseek().

CONFIDENTIAL Run-Time Library Overview

5-12 Memory Card Library

Run-Time Library Overview CONFIDENTIAL

Chapter 6:

Extended Memory Card Library

Table of Contents

Overview
Library and Header Files
Features of the Library
Checking Memory Card Status
Reading/Writing Data
Detecting a New Card

Libcard and the Card BIOS
Use with Multi Tap

The Memory Card
Hardware

Rules for Using the Memory Card
Handling Irregularities
Terminology
File Names
File Header
Saving Write Data

CONFIDENTIAL

6-3
6-3
6-3
6-3
6-3
6-3
6-4
6-4

6-4
6-4

6-4
6-5
6-5
6-5
6-6

Run-Time Library Overview

6-2 Extended Memory Card Library

Run-Time Library Overview CONFIDENTIAL

Extended Memory Card Library 6-3

Overview

The high-level Memory Card library (lilomcrd) provides a convenient interface for using Memory Cards
installed in the PlayStation.

Library and Header Files

Programs that use extended Memory Card library services must link with the file | i brer d. | b. Internally,
libmcrd uses | i bcard. libandlibapi.lib, sothese libraries must also be linked.

Source files must include the header file | i bnecr d. h.

Features of the Library
» Check for presence of Memory Card, check to see if Memory Card is uninitialized, and check for
Memory Card invalid state
e Write data to Memory Card
* Read data from Memory Card
* Logical initialization (formatting) of Memory Card
* File deletion
* File creation
» Get directory information

Checking Memory Card Status

The Memory Card can be inserted or removed when the PlayStation is on. Thus, the user application must
be designed to take into account the fact that the Memory Card may be inserted or removed at any time.

Libmcrd provides the MemCardAccept() function to determine if a card has been inserted or removed. The
status of the card can be obtained by this function when the card is installed.

Reading/Writing Data

When data is being written to or read from the Memory Card, communication errors may occur. Libmcrd
internally performs retries when communication errors occur during data reads or writes. However, the
written or read data must be checked by the user application using a verification process, checksum, or
other method to verify that it is correct.

Detecting a New Card

A Memory Card that has just been inserted is treated as a new card. Because the new card may be
unformatted or invalid, the library is designed so the card cannot be accessed until MemCardAccept() is
executed.

If the new card was detected with MemCardAccept(), however, it is not necessary to execute
MemCardAccept() again, as the various processes such as format checking were already performed.

If a new card is inserted, any function other than MemCardAccept() (such as MemCardExit() or
MemCardReadFile()) will return "New card detected" as its result no matter how many times it is called.

CONFIDENTIAL Run-Time Library Overview

6-4 Extended Memory Card Library

Libcard and the Card BIOS

Libmcerd uses libcard and card BIOS functions and resources such as the HWCARD and SwCARD events.
Consequently, user applications cannot directly use libcard or the card BIOS.

If a user application needs to perform an operation that cannot be implemented using liomcrd, the
application must implement all Memory Card operations which use libcard and the card BIOS.

Use with Multi Tap

When switching access between multiple Memory Cards connected to one Multi Tap, call
MemCardAccept() every time you access a different Memory Card. The reason for this is that in libmcrd,
each port on the PlayStation unit has only one directory information buffer. When multiple Memory Cards
are connected to one Multi Tap, only one directory information can be controlled

The Memory Card

The Memory Card is a storage device that retains data even after the PlayStation has been powered off or
reset.

Memory Cards can be inserted or removed while the PlayStation is turned on.

Hardware

The specifications for the Memory Card hardware are shown below.

Table 6-1: Memory Card Specifications

Capacity 120 KBytes (formatted)

(Accessed in 128 byte sectors)
Communication Synchronous serial port also serving as a controller port
Access speed (1) No access for 20 msec after writing one sector

(2) Approximately 10 KBytes/sec maximum continuous read
Other Can be inserted or removed without turmning power off.

Guaranteed for 100,000 writes

Rules for Using the Memory Card

The Memory Card is a resource that is shared by multiple applications. Therefore the Memory Card should
be used according to a common set of rules.

Handling Irregularities

There is no required screen or message to be output when a card runs out of memory during application
execution or when an unformatted card is detected (i.e., there is no requirement that the display be the
same as OSD). Rather, these situations can be customized according to the application. Nevertheless, the
following points should be taken into consideration.

* The user should be notified before formatting occurs. Formatting should not be performed
automatically.

* The user should be notified when no card is detected but one is expected. If possible, the user should
be prompted to insert a card.

Run-Time Library Overview CONFIDENTIAL

Extended Memory Card Library 6-5

Terminology

In the product catalogs, the required memory capacity is expressed in terms of "blocks", where one block
is 8192 bytes.

File Names

File names should be assigned as follows:

Table 6-2: Memory Card Filenames

Byte Description Notes

0 Magic number Always 'B'

1 Location 'I' for Japan, 'A' for North America, 'E' for Europe (*1)

2-11 Title SCE product number (*2)

12-20 User defined Use ASCII characters excluding 0x00, Ox2a (“*”),
Ox3f (“?").

End with 0x00

*1: Not checked by the system
*2: If multi-disc title, use the product number from the first disc.

The SCE product number will be determined at a preliminary sales meeting held by us (approximately three
weeks before submission of master) and we will notify the business contact of the subject company. Please
use the product number in the following manner.

For example, if the product code is “SLPS-00001",
The first 12 characters of the filename would be BASLPS-00001".

The numerical portion must be five digits padded with zeros.

File Header

Please use the following header at the beginning of each file:

Table 6-3: Memory Card File Header

ltem Size (bytes)

Magic number 2 (always 'SC")

Type (see table 6-4) 1

Number of blocks 1

Name 64 (Shift-JIS *1)

pad 28 (All packed at 0x00)
Clut 32

Icon image (1) 128 (16x16x4 bits)
Icon image (2) 128 (Type==0x12,0x13 only)
Icon image (3) 128 (Type==0x13 only)
Data Variable (128 bytes x n)

*1: Non-kanji and Level 1 kaniji only. Full-width, 32 characters.
However, 0x84bf to 0x889e cannot be used.
The end of the character string terminates at 0x00.

CONFIDENTIAL Run-Time Library Overview

6-6 Extended Memory Card Library

Table 6-4: Type Field

Type Number of icon images
(Animation through automatic replacement)
Ox11 1
0x12 2
0x13 3

Saving Write Data

The application must handle cases where data is destroyed because the unit was reset, the card was
removed, or the power was turned off during a data write operation.

To save data: Write data twice, writing to one data set and then to the other. At the end of each sector add
a checksum for the sector. Do a checksum test when reading the sectors. If an error is detected, use the
other data set.

Caution: The replacement sector feature of the file system is valid only for memory write errors in the
Memory Card. There is no hardware or library support for saving write data contents.

Run-Time Library Overview CONFIDENTIAL

Chapter 7:
Data Compression Library

Table of Contents

Overview 7-3
Library and Header Files 7-3
Compressor and Decompressor Functions 7-3
MDEC 7-3
Compression of Image Data 7-4
DCT (Discrete Cosine Transform) 7-4
BVQ (Block Vector Quantization) 7-5
Huffman Encoding 7-6
DCT (Discrete Cosine Transform) 7-6
Basic Principles 7-6
Methods Supported 7-7
Asynchronous Decoding 7-8
Callback 7-9
Playing Movies with the CD-ROM 7-9
Direct Transmission and Texture Transmission 7-10
Encoding by Means of the Local Environment 7-10
BVQ (Block Vector Quantization) 7-10
CLUT Vector Quantization 7-11
Huffman Encoding 7-11
Compression of Sound Data 7-11

CONFIDENTIAL Run-Time Library Overview

7-2 Data Compression Library

Run-Time Library Overview CONFIDENTIAL

Data Compression Library 7-3

Overview

The data compression library (libpress) is a low-level function library for compressing (encoding) and
decompressing (decoding) image and sound data.

Image data that can be compressed and decompressed includes:
* Single images.
* Frames from a video sequence that have been compressed into the PlayStation MDEC format.
The MDEC is a customized portion of the PlayStation hardware specializing in image decompression.
Three methods of compressing images are available:

» DCT (Discrete Cosine Transform) can be used to compress direct color images

* BVQ (Block Vector Quantization) likewise combines the number of colors in the direct color image
together to create 256/16 colors

» Huffman Encoding (fixed codebook) reversibly compresses 4 bit index colors.

For compressing sound data, the library uses ADPCM to compress 16-bit straight PCM to about 1/4. The
compressed sound data can be used as SPU sound source data.

Library and Header Files

The filename of the data compression library is | i bpr ess. | i b; to use library services, you must link with
this file. The library header is | i bpr ess. h; programs that call library routines must include this file.

Compressor and Decompressor Functions

Compressor functions compress image and sound data in main memory, and return the results to main
memory. Compressor functions are used when data needs to be compressed dynamically inside an
application, and when data is generated off-line by remote activation from the authoring environment. In
fact, the local environment has a built-in DCT circuit which can be used to carry out high-speed
compression of images by means of DCT.

Decompressor functions expand compressed data in real time. Note that in some cases, compressor
functions produce data formats that are processed without conversion but rather via local environment
hardware, like BVQ. Data in these formats cannot be handled by decompressor functions.

MDEC

The PlayStation provides a specialized data display engine, the MDEC (Motion DECoder), for high-speed
image data expansion. MDEC expands compressed data in main memory and returns the result back to
main memory. This result is transferred to the frame buffer display area, and displayed as an image.

CONFIDENTIAL Run-Time Library Overview

7-4 Data Compression Library

Figure 7-1: Data Expansion and Display by MDEC

FrameBuffer
I
CPU MDEC GPU
| I il

v v v
CDROM

BS RunLevel MacroBlock
BitStream

Main Memory

The main bus access which was saved to the main memory is carried out by time sharing with the CPU
and other peripheral equipment and can perform expansion processing in parallel with the program and

frame buffer transfer, etc.

Compression of Image Data

Algorithms used to compress image data vary according to the type and intended use of the data.

DCT (Discrete Cosine Transform)

DCT is the compression method used in JPEG/MPEG. It compresses direct-color (24-bit/16-bit) images
with a high efficiency ratio. The compression is lossy, but the compression ratio can be controlled at will.

The compression ratio specified is usually between 5% and 10%.

In DCT, the basic processing unit is a 16x16 24-bit direct-color image called a macroblock. All the images
are broken down into macroblocks before being compressed into bitstream format. The output of

decompression is also in macroblock units.

For example, when 320x240 image data is broken down into a large number of 16x16 macroblocks, as

shown below, they are each compressed into bitstreams.

Run-Time Library Overview

CONFIDENTIAL

Data Compression Library 7-5

Figure 7-2: 320x240 Image Breakdown

Macroblock Generated image
320

A

G D —

B
16
240
“«—>

16

v

Figure 7-3: DCT Processing
Macroblock (16x16 RGB rectangular area)

v compression
Bitstream

v decompression
Macroblock (16x16 RGB rectangular area)

BVQ (Block Vector Quantization)

BVQ carries out vector quantization on direct-color images, combining colors to give a total of 256 or
16 colors, and generating 8-bit or 4-bit index-color images.

Index-color images are expressed as a two-dimensional array consisting of the CLUT (Color Look Up
Table) which gives the actual brightness values, and the index to the CLUT.

Index-color images allow a slightly greater total reduction in data volume than the equivalent direct-color
images. For example, if the brightness value of the individual pixels in a picture is 16 or below, the index
only takes 4 bits. The volume of an index-color image can therefore be compressed to 25% of the volume
of a 16-bit direct-color image.

4-bit/8-bit index-colors can be used as 4-bit/8-bit texture-patterns, doing away with the need for a special
decompression filter.

In BVQ, the image is split up into several small areas when compression is carried out, and vector
quantization is carried out on each small area, allowing the number of colors to be reduced by combination.
At this stage, vector quantization is carried out again on the CLUT generated for each small area, so the
number of CLUTs can also be reduced by combination. In this case, each pixel of the image data is
indexed doubly: once by the CLUT number held by the small area to which the pixel belongs, and by the
index value for that CLUT.

Vector quantization in which the index reference is carried out in stages in this way is called Block Vector
Quantization.

CONFIDENTIAL Run-Time Library Overview

7-6 Data Compression Library

Huffman Encoding

DCT and BVQ compression and decompression are lossy. Therefore, a Huffman encoding function is
provided for reversible compression of 4-bit index colors. The Huffman encoding is the classical type in
which the codebook is generated once at the beginning.

Huffman encoding compresses data by assigning codes with a short code length (Huffman codes) in order,
starting with the pixel values (index values) which appear most frequently. The table showing the actual
pixel values and their corresponding Huffman codes is called the codebook.

The compression ratio for Huffman code varies according to the nature of the source image. Generally, the
greater the polarization of the pixel values appearing, the higher the compression ratio will be.

The following table summarizes the compression and decompression methods:

Table 7-1: Compression and Decompression Algorithms

DCT BvQ Huffman
Type Lossy Lossy Loss-less
Input format 24-bit/16-bit 24-bit/16-bit 4-bit
Output format BitStream 4-bit/8-bit BitStream
Compression ratio From 10% to 5% From 50% to 25%

DCT (Discrete Cosine Transform)

Basic Principles

Compression

DCT belongs to the category of linear transforms generally termed direct transforms, and can be thought of
as a kind of frequency transform.

When DCT conversion is carried out on an NxN rectangular image, the low-frequency constituents of that
image are concentrated in one place. Compression of the data is achieved by Huffman-encoding the
results. In short, DCT is a method for making data compression easier, and does not, in itself, reduce the
data size. The actual data compression is done by the Huffman encoding.

When DCT conversion is carried out on an ordinary image, the frequency constituents are concentrated in
the low region, so after conversion, most of the constituents are at 0. This means that a much higher
compression ratio can be achieved than if the image had been Huffman-encoded directly. This type of
Huffman-encoding is called VLC (Variable Length Coding).

The byte/word boundary of VLC-processed data is logically meaningless, and the data is expressed simply
as a stream of bits. This is known as a bitstream.

The basic unit for all the processes in this sequence is a 16x16 rectangular area. This unit is known as a
macroblock. Accordingly, in DCT compression, macroblocks can be input, compressed, and converted to
bitstream format.

After the image has been subjected to DCT conversion, quantization is carried out all at once in given units.
The compression ratio can be controlled by controlling the quantization step. Generally speaking,
broadening the quantization step improves the compression ratio.

Decompression

DCT decompression is carried out in the reverse order to that of compression. That is to say, once VLC
decoding has been carried out on the captured bitstream, the result is subjected to IDCT (Inverse Discrete
Cosine Transform) to restore the original image.

Run-Time Library Overview CONFIDENTIAL

Data Compression Library 7-7

The decompression of the bitstream therefore consists of two passes:

1. VLC decoding
2. IDCT

Methods Supported

Compression

In the case of 24-bit color data, intermediate data is output in a format (run level) where the run-length is
compressed once DCT conversion has been carried out. This data is subjected to VLC, and a bitstream is
output. The compression ratio is controlled by specifying the quantization step in the process generating
the run level.

When the actual compression is carried out, the run level (the intermediate data) is not output.

Figure 7-4: DCT Compression

24bit 16x16 macroblock

¢ - compression ratio setting:
Lossy conversion
run-level (intermediate result: not output)
¢ “« Huffman encoding:

bitstream Lossy conversion

Macroblock encoding is performed in the following fashion:
» Performs CSC (Color Space Conversion) on the RGB macroblock to convert the Y, Cb and Cr
elements. Y is the brightness element and Cb, Cr are color difference elements.

* Within the YCbCr macroblock, divides Y into four 8x8 blocks. Thins out Cb, Cr and arranges them as
8x8 macroblocks. As a result, the YCbCr macroblock is divided into six blocks (YO, Y1, Y2, Y3,
Cb, Cr).

» Converts each block by DCT (Discrete Cosine Translation).

* Quantizes (divides) each element of the block as a fixed value.

» Lists each element of the block in zig-zag order.

* Run length compresses each element of the block and converts to run level.
» Performs VLC (Huffman encoding) on the run level and creates BS.

Decompression is carried out by operations which are the reverse of those used in compression.

The image data handled in DCT is 24-bit direct-color data, but the bitstream produced by compressing this
data can be decompressed in either 16-bit or 24-bit mode. The mode can be selected when
decompression is carried out.

In the case of a 16-bit pixel, the On/Off status of the first bit (the STP bit) can also be selected when the
data is decompressed.

CONFIDENTIAL Run-Time Library Overview

7-8 Data Compression Library

Figure 7-5: DCT Decompression

bitstream

v VLC decoding

v Function name: DecVLC()
run level

v IDCT

v Function name:

24bit 16x16 macroblock ~ DecDCTin()/DecDCTout()

MDEC performs decompression from runlevel to macroblock.
The function DecDCTvIc() is used for VLC decoding.

Because IDCT processing takes time, a separate piece of hardware (the MDEC) performs the processing in
parallel with the CPU. The function DecDCTin() is therefore provided for transferring the data to the MDEC,
and the function DecDCTout() is provided for receiving the decompressed data.

Asynchronous Decoding
The MDEC and the CPU work in parallel, sharing the main memory.

The function DecDCTin() isews togetheri the intervals in which the CPU provides the image sections and
transmits the run level to the MDEC in the background.

In the same way, the function DecDCTout() transfers decompressed macroblocks to the main memory in
the background.

The data decompressed by the MDEC is always transmitted to the frame buffer, via the main memory.
When this is done, the exchange between the MDEC and the main memory can be carried out
asynchronously. Accordingly, one frame's worth of (640x240) images can be decompressed without
creating a frame's worth of buffer in the main memory.

In the example below, the image is split up into long narrow 16x240 (15-macroblock) areas (slices), and the
data for each slice is received and transmitted separately.

Example:

extern unsi gned | ong *ndec_bs; /*bi tstreant/

extern unsigned long *ndec_rl; /*run level (internediate data)*/
extern unsi gned short ndec_i nage[15][16][16] ;
/ *decode nmcr obl ock*/

DecDCTvl c(ndec_bs, ndec_rl); /*VLC deconpressi on*/

DecDCTi n(ndec_rl, 0); /*transmit run |evel*/

for (rect.x = 0; rect.x < width; rect.x += 16)

DecDCTout (ndec_i mage, slice); [*receive*/
Loadl mage(& ect, ndec_i mage); /*transfer to frame buffer*/

}

The bitstream transmitted by one execution of the function DecDCTin() is thus received by several
executions of the function DecDCTout(), allowing the size of the buffer in the main memory to be reduced.

However, in this case, there has to be a match between the bitstream transmitted and the number of
macroblocks received.

Run-Time Library Overview CONFIDENTIAL

Data Compression Library 7-9

Callback

DecDCTin() and DecDCTout() are both non-blocking functions that return without waiting for data
transmission/reception to terminate.

To detect the termination of the transmission, you can either poll, using the functions DecDCToutSync() and
DecDCTinSync(), or register a callback function to be called when the transfer terminates.

To register a callback function, use DecDCToutCallback() and DecDCTinCallback(). You can arrange for
image decompression to be carried out asynchronously by designing the callback so that it activates the
next data transmission/reception.

In the example below, the next DecDCTout() is activated within DecDCTout's callback function.

Example:

mai n()

{
DecDCTout (mdec_i mage, slice); /*transm ssion of first block*/
DecDCTout Cal | back(cal | back) ; /*define call back*/
DecDCTvl c(nmdec_bs, ndec_rl); /*VLC decodi ng*/
DecDCTi n(ndec_rl, 0); [*transmit run |evel */
[*foreground processing descri bed here*/

}

cal | back()

{
Loadl mage(& ect, ndec_i mage); /*transfer to frame buffer*/

if((rect.x += 16) < width)

DecDCTout (ndec_i mage, slice); /*receive next*/
el se
DecDCTout Cal | back(0); /*term nat e*/

Playing Movies with the CD-ROM

Movies can be played by reading in and playing bitstreams continuously from the CD-ROM. The resolution
and number of frames is determined by the decompression speed and the CD-ROM transmission speed.

The MDEC's maximum decompression speed is 9,000 macroblocks per second, or the equivalent of 30
320x240 images. The decompression speed has nothing to do with the compression ratio.

The image resolution and the number of frames played are, of course, inversely proportional. That is to say,
with a 320x240 image, a speed of 30 frames a second can be achieved, and with a 640x240 image, speed
of 15 frames a second can be achieved.

The process of continuously reading data from a CD-ROM is called streaming. Streaming functions are
supplied separately in the libcd library.

Movies are played by placing the bitstream in the containers supplied by the streaming mechanism.
Supplementary information such as movie size, etc., is not included in bit stream; therefore, the infomation
needed to play a movie is defined separately in the data format (STR format) added to the header.

CONFIDENTIAL Run-Time Library Overview

7-10 Data Compression Library

Table 7-2: Decompression Speed and Resolution

Resolution Frames per second
320 x 240 30

640 x 240 15

640 x 480 7.5...

The CD-ROM transmission rate can be set to either 150KB/sec (standard speed) or 300KB/sec (double
speed). When playing at double speed, if the bitstream forming one frame is compressed to 10KB

(= 300KB/30) or less, and then recorded on the CD-ROM, 30 frames of data per second would be read off
the CD-ROM.

Table 7-3: Transfer Speed and Data Size

Data size Frames per second
10KB 30

20KB 15

30KB 7.5 ..

The moving picture play rate is determined by these two conditions. For example, when playing at double
speed, the bitstream comprising one frame (320x240) would be compressed to 10KB (= 300KB/30) before
being recorded on the CD-ROM.

Within the range satisfying these conditions, any number of frames, any image resolution, and any
compression ratio can be selected.

Direct Transmission and Texture Transmission

Simple moving-picture playback is achieved by using VRAM as a double buffer, and transmitting the
images decompressed in the drawing buffer, in succession. The movie transmission is used to clear the
background and is also able to draw the object primitive.

The method whereby decompressed images are transferred directly to the drawing area of the frame buffer
is called direct transmission.

Conversely, the method whereby texture transmission is carried out by temporarily transmitting
decompressed images to the texture area is called texture transmission. When texture transmission is
used, the textures used are limited to 16-bit mode.

Encoding by Means of the Local Environment
DCT compression is not normally carried out at run time.

However, if the images created on the drawing device are captured from the frame buffer and compressed
there, it is assumed that when authoring is carried out, data compression will be performed using the CPU
power of the local environment, so DCT compression functions are also provided in libpress.

The DCT calculations required for compression processing can also be carried out using the MDEC's IDCT
calculation circuit, so if the local environment is used, faster encoding is possible.

BVQ (Block Vector Quantization)

BVQ reduces the number of colors in a 24-bit/16-bit direct-color image by vector quantization, and
generates an image in 8-bit/4-bit index-color format. Vector quantization is a method in which quantities

Run-Time Library Overview CONFIDENTIAL

Data Compression Library 7-11

(vectors) which cannot be ordered one-dimensionally are quantized adaptively, according to their frequency
of occurrence.

The data compressed by DCT has already been recoded to 16 bits when it is transmitted to the frame
buffer, so there is no saving in terms of the area in the frame buffer itself. However, vector-quantized
images have the advantage that they can be transmitted, still in compressed format, to the frame buffer,
and used, without conversion, as texture patterns.

To carry out block vector quantization, one image has to be divided up beforehand into several small areas.
The division method used generally depends on the way in which the image is used as a texture pattern.

On the PlayStation, an individual CLUT can be assigned to each polygon to be texture-mapped.
Accordingly, the areas are normally delineated according to the primitive values (u,v) of each polygon.

CLUT Vector Quantization

When vector quantization is carried out individually on small areas, the number of CLUTs generated is only
as big as the number of areas produced by division. However, when the number of divisions is large, the
area occupied by the CLUTs becomes too big to be negligible.

To avoid this situation, a function is provided for carrying out further vector quantization on the CLUT itself.
For example, when a 320x240 image is divided into 300 16x16 4-bit cells, the 300 CLUTs generated for
the cells can be quantized further and combined into 8 CLUTSs, for example.

Huffman Encoding

The Huffman encoding supported by libpress is the classical type in which the codebook is fixed. Huffman
encoding is only carried out on 4-bit index-color data.

In Huffman encoding, the content of the data is preserved by the process of compression or
decompression. This compression method is called reversible compression (or loss-less compression).
Generally speaking, in loss-less compression, the compression ratio cannot be controlled.

The Huffman encoder starts by generating a codebook from the frequency of occurrence of the input
pixels. The size of the codebook is fixed, regardless of the number of pixels, so when there are not many
pixels, the space occupied by the codebook is proportionally high, and compression efficiency is low.

When the codebook is generated, each pixel is compressed in accordance with it. As a result, the data
generated is in bitstream format, as with DCT.

The compressed data is always decompressed as a set along with the codebook.

Compression of Sound Data

The PlayStation uses sound data that has been compressed from 16-bit straight PCM data to 4-bit
ADPCM. The compressed sound data can be used, without conversion, as SPU sound-source data.

The SPU provides a function called looping so that periodic sound data can be recorded using a small
number of samples. When compressing sound data, you can set a suitable loop point.

CONFIDENTIAL Run-Time Library Overview

7-12 Data Compression Library

Run-Time Library Overview CONFIDENTIAL

Chapter 8:
Basic Graphics Library

Table of Contents

Overview 8-3
Library and Header Files 8-3
Graphics System 8-3
Frame Buffer Addressing 8-4
Display Area and Drawing Area 8-5
Drawing Environment 8-5
Display Environment 8-6
Display Area and Screen Area 8-7
Switching Display and Drawing Environments (Double Buffer) 8-7
Blocking Functions and Non-Blocking Functions 8-8
Drawing Primitives 8-9
Special Primitives 8-10
Primitive Expression Format 8-11
Initializing Primitives and Setting Their Members 8-11
Primitive Attributes 8-12
Combining Primitives 8-12
Executing Primitives 8-13
Primitive Drawing Rules 8-13
Ordering Tables 8-14
Registering Primitives in the OT 8-14
Registering Special Primitives 8-14
Linking Primitives Without an OT 8-15
Ordering Tables and Z Sorting 8-15
Reverse OT 8-16
Combining with Geometry Functions 8-16
Multiple OTs 8-17
Synchronization and Reset 8-18
Reset 8-18
Synchronization 8-18
Packet Double Buffer 8-21
Asynchronous Double Buffer 8-22
Texture Mapping 8-23
Texture Pattern Format 8-23
Texture-Mapping Primitive Brightness Values 8-26
Repeating Texture Patterns 8-26
Primitive Rendering Speed 8-27
Access Rules 8-28
Clipping 8-30
Structure of the Texture Cache 8-30

CONFIDENTIAL Run-Time Library Overview

8-2 Basic Graphics Library

Primitive Division
Texture Mapping Distortion
Texture Cache Mistakes
Clip Overhead
Primitive Division
Debug Environment
Debug Mode
Debug String
High-Level Library Interface

Cautionary Programming Notes

Texture Polygon Coordinate Specification

Handling PAL Format

Timing for Updating the Frame Buffer
VSync Synchronization in Interlace Mode

GPU timeout message

Run-Time Library Overview

CONFIDENTIAL

8-33
8-33
8-33
8-33
8-34

8-35
8-35
8-35
8-35

8-36
8-36
8-41
8-43
8-45
8-46

Basic Graphics Library 8-3

Overview

The Basic Graphics library (libgpu) is a low-level function library that allows you to work with primitives, such
as triangles, rectangles, and sprites. It provides:

» System functions for controlling the entire graphics system (for example, graphics system reset).

» Frame buffer access functions for directly reading and writing the contents of the frame buffer.

* Primitive functions for initializing and manipulating primitive structures and setting the texture page.

» Ordering table functions for recording primitives in an ordering table, manipulating ordering tables, and
drawing ordering table primitives.

» Synchronization functions for synchronizing your code with hardware events, such as the vertical
blank period and the completion of drawing operations.

Library and Header Files

To use graphics library services, you must link with the file I i bgpu. | i b. You must also link | i bapi . i b
andlibetc.libwhenusinglibgpu.lib.

Your source files should include the header file | i bgpu. h. In addition, you must include | i bgt e. h and
sys/types. h. Youinclude sys/ t ypes. h because it defines the following data types used by

I i bgpu. h:
t ypedef unsigned char u_char;
t ypedef unsi gned short u_short;
t ypedef unsigned int u_int;
t ypedef unsigned | ong u_l ong;
Graphics System

The PlayStation’s graphics system consists of:
A specialized high-speed graphics rendering engine known as the GPU (Graphics Processing Unit).

A 1MB area of high-speed video memory called the frame buffer. It is used for storing graphics data,
including the information used for the current video display, a drawing area, as well as textures and color
tables.

A coprocessor (the GTE) for performing high-speed geometry operations. The GPU can use the results of
GTE calculations in its commands. The GTE is discussed in Chapter 9 (Basic Geometry Library).

CONFIDENTIAL Run-Time Library Overview

8-4 Basic Graphics Library

Figure 8-1: Graphics System

CPU GPU frame buffer | > Video

l T main bus

command execution command execution

drawing command

main memory

The GPU draws graphics into the frame buffer’s drawing area by executing instruction strings (primitives)
stored in main memory. Libgpu’s data structures closely correspond to the primitives recognized by the
GPU hardware itself.

Data from the frame buffer is continuously used to create the video signal displayed on your television
monitor. By rewriting the frame buffer contents at speeds of up to 60 times per second, moving images are
generated. Note: The graphics system contains no special background plane for displaying image data
after it is drawn temporarily in the frame buffer.

Frame Buffer Addressing

The frame buffer is arranged as a bitmap that is 1024 pixels wide by 512 pixels tall, with 16 bits per pixel.
The total size of the frame buffer is therefore one megabyte (1024 x 512 pixels x 2 bytes per pixel). It is
used to store texture patterns and color lookup tables (CLUTSs) as well containing drawing and display
areas.

Figure 8-2: Frame Buffer

1024

A
\ 4

Display region Texture pattern

512

Drawing region

Texture CLUT

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-5

Pixels in the frame buffer are specified by 2-dimensional coordinates. X-coordinates range from 0 to 1023
and Y-coordinates from O to 511. Each pixel has a 16-bit depth: 5 bits for blue, 5 bits for green, and 5 bits
for red; the high-order bit indicates semi-transparent mode status, as shown below:

Figure 8-3: Pixels

15 14 10 9 5 4 0

S B G R

S: semi-transparent FLAG(STP)

Display Area and Drawing Area

The display area is a rectangular section of the frame buffer used to display the video image. Its size
depends on the display mode, which ranges from 256 x 240 to 640 x 480 (709 x 488 during overscan).
Any of the following combinations can be chosen:

Table 8-1: Display Modes

Width 256, 320, 360, 512, 640

Height 240 (interlace off), 480 (interlace on),
Pixel mode 24-bit, 16-bit

Interlace On, off (must be off in 480-line mode)

Note: The screen heights assume an NTSC system. For information on working with PAL, see the section
“Handling PAL Format”.

The drawing area is a rectangular section of the frame buffer into which graphics data are drawn. Its size is
not limited as long as it is fully contained within the frame buffer.

If any part of the drawing area overlaps the display area, its data is shown on the screen. To avoid this
effect, a double buffering scheme is typically used. You prepare two separate areas of the same size in the
frame buffer. One area is used for drawing while the other is being displayed. After drawing into the drawing
area has completed, you switch the areas. Typically, the switching is done during the vertical blank period
in order to avoid unsightly screen flashing or tearing.

Drawing Environment

The drawing environment contains general information related to two-dimensional primitive drawing, such
as the position of the drawing area and the drawing offset. This information is held in the DRAWENV
structure, defined as follows:

t ypedef struct DRAVENV

{
RECT cl i p; /*clipping (draw ng) area*/
short ofs[2]; /[*drawi ng of fset*/
RECT tw /*texture w ndow/
unsi gned short tpage; /*texture page*/
unsi gned char dtd; /*dither flag (0:off, 1:o0on)*/
unsi gned char dfe; /*di splay area drawi ng fl ag*
unsi gned char i sbg; /*enable to auto-clear)*/
unsi gned char r0, g0, bO; /*initial background col or*/
DR _ENV dr_env; /*reserved*/

} DRAVIENV;

CONFIDENTIAL Run-Time Library Overview

8-6 Basic Graphics Library

You can use the function SetDefDrawEnv() to set the fields of a DRAWENYV structure. You use
PutDrawEnv() to make it the current drawing environment. To get a pointer to the current drawing
environment, call GetDrawEnv().

DRAWENYV contains the following information:
» Clipping: The drawing (clipping) area is a rectangular area in the frame buffer defined by (clip.x, clip.y) -
(clip.x + clip.w, clip.y + clip.h).

» Offset: The offsets ofs[0] and ofs[7] are added to the X and Y values, respectively, of all primitives
before drawing.

e Texture Window: (tw.x, tw.y) - (tw.x + tw.w, tw.y + tw.h) specifies a rectangle inside the texture page,
to be used for drawing textures.

» Texture Page: tpage specifies the texture page to be used as the default texture pattern. One texture
page has a size of 256 x 256 pixels.

» Dither Processing Flag: If dtd is set to 1, the drawing engine performs dithering when drawing pixels.

» Display Area Drawing Flag: When dfe is 1, drawing is permitted in the display area. (By default,
drawing into the display area is blocked.)

» Drawing Area Clear Flag: If isbg is set to 1, the clipping area is cleared to the RGB color specified by
the r0, g0, & b0 fields when the drawing environment is set.

« Background Color: rO, g0, b0 are the RGB color values used for clearing clipping area when isbg field
issetto 1.

Display Environment

Information related to the frame buffer display, such as the position of the display region, is called the
display environment. Display environment information is held in the DISPENV structure, defined as follows:

t ypedef struct DI SPENV

{
RECT di sp; /*di splay area*/
RECT screen; /*di splay start point*/
unsi gned char isinter; /*interlace 0: off 1. on*/
unsi gned char isrgb24; /*RGB 24-bit node */
unsi gned short padO, padi; /*reserved */

} DI SPENV;

You can use SetDefDispEnv() to set the fields of a DISPENV structure. To make it the current display
environment, call PutDispEnv(). To get a pointer to the current display environment, call GetDispEnv().

DISPENV contains the following information:

» Display Area: The rectangular area within the frame buffer (disp.x, disp.y) - (disp.x + disp.w, disp.y +
disp.h) is the display area. Its width (disp.w) can be 256, 320, 360, 512 or 640 pixels. Its height (disp.h)
can be 240 or 480 pixels.

» Screen Area (screen.x, screen.y, screen.w, screen.h): Specifies where on the actual physical screen
the display area is shown. The standard monitor screen coordinates are (0, O) - (256, 240). If you
specify a smaller screen area, it is an underscan; if you specify a larger screen area, it is an overscan.
For example, if screen.w is set to a value greater than 256, more pixels than 256 cannot be displayed,
even if in 320 mode. The size of each pixel does not change.

» Interlace: If isinter is set to 1, the display will be in interlace mode. (If the height is 480, display is in
interlace mode regardless of the setting of this flag.)

* 24-Bit Mode Flag: If isrgh24 is set to 1, frame buffer data is interpreted as being in 24-bit pixel format
instead of the standard 16-bit.

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library

Display Area and Screen Area

The following figure shows the relationship between the display area and the screen area:

Figure 8-4: Display Area and Screen Area

Frame buffer Display
0 1023 0 255
(disp.x,y) (screen.x,y)
Display region T T
disp.h screen.h
disp.w ’ y screen.w ’
511 255

Switching Display and Drawing Environments (Double Buffer)

A double buffering system uses two areas in the frame buffer that switch between display and drawing
environments. For example, when buffer O occupies the rectangular area (0,0)-(320,240) in the frame buffer
and buffer 1 is at (0,240)-(320,480), the respective drawing and display environments are set as follows:

Table 8-2: Double Buffer

Buffer O Buffer 1 Notes
Drawing environment
(clip.x, clip.y) (0,0) (0,240)
Clip start point
(ofs[Q], ofs[1]) (0,0 (0,240) Drawing offset
Display environment
(disp.x, disp.y) (0,240) (0,0 Display area origin

The fields of the DRAWENV and DISPENV structures may be set with the functions SetDefDrawEnv() and
SetDefDispEnv(). To switch the drawing and display buffers, use PutDrawEnv() and PutDispEnv()to set the
new drawing and display environments.

If you change the drawing environment using PutDrawEnv() while drawing is already taking place, there is
no effect on the current primitive being executed or on the remainder of the current primitive list. The new
drawing environment takes effect with the next drawing operation.

In addition to using PutDrawEnv(), you may also dynamically switch all or a portion of the drawing
environment in the middle of drawing by registering a special primitive in the ordering table. See “Primitives”
and “Ordering Tables” for more information.

On the other hand, settings made in the display environment become effective immediately. Therefore, the
display location and display area can be changed even when drawing is being carried on in the
background.

CONFIDENTIAL Run-Time Library Overview

8-8 Basic Graphics Library

The following code shows the basic method of switching double buffers:

DRAVEENV dr awenv| 2] ; /*drawi ng environment s*/
DI SPENV di spenv| 2] ; [*di spl ay environments*/
int dispid = 0; [*di splay buffer |D*/
while (1) {
VSync(0); /*wait for vertical blank*/
dispid = (dispid + 1) %; /*toggle buffer I D between 0 and 1*/
Put Dr awEnv(&dr awenv[di spi d]); /*switch draw ng environnent*/
Put Di spEnv(&di spenv[dispid]); /*switch display environnent*/
}

If you use interlace mode with a height of 480 lines, it may not be possible or practical to set up a double
buffer. (For example, in 640 x 480 mode there isn’t room for two buffers in the frame buffer.) Therefore, a
single buffer may be used for both drawing and display.

In interlace mode, in each frame (1/60 second), the display updates either the odd or even lines of the
buffer, alternately. In effect, odd lines are re-displayed every 1/30 second, and the same for even lines.

If you set the dfe flage of your DRAWENV structure to zero, drawing is prohibited to the areas of the screen
currently being displayed. This has the effect of allowing drawing only to the odd lines when even lines are
being displayed, and even lines when odd lines are being displayed. This is the equivalent of the usual
double-buffer switching. You don’t need to do any explicit switching between display and drawing
environments.

Note: for this scheme to be effective, drawing must complete within 1/60 second.

Blocking Functions and Non-Blocking Functions

Functions that complete their processing before returning are called blocking functions. That is, the
program is blocked and the next instruction can’t execute until the current one finishes.

Several drawing functions that typically take a long time are processed in the background and return
without awaiting completion. These are called non-blocking functions.

The following functions, which directly access the contents of the frame buffer, are non-blocking:

* Loadlmage() - Transfer from main memory to frame buffer
» Storelmage() - Transfer from frame buffer to main memory
* Movelmage() - Transfer from frame buffer to frame buffer

The following functions, which draw primitives, are also non-blocking. See the sections on “Primitives” and
“Ordering Tables” for more information.

* DrawPrim() - Draw a primitive
* DrawQTag() - Execute a list of GPU primitves.

All functions other than those listed above are blocking functions.

To detect whether non-blocking functions have finished, or to wait for them to finish, you can call
DrawSync(). For example:

Loadl mage(& ect, pix); / *A non- bl ocki ng function*/
Dr awSync(0) ; /*Waits for drawing to conplete*/

See “Synchronization” for more information about DrawSyncy).

A maximum of 64 non-blocking functions may be queued. For example:

Dr awOTag(ot 0) ; /*0*/
Dr awOTag(ot 1) ; [*1*/

Dr awOTag(ot 2) ; [*2*%]

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-9

If DrawOTag(ot0) is not completed when DrawQOTag(ot1) is invoked, the system simply registers the request
to the queue and returns. DrawOTag(ot1) waits until DrawOTag(ot0) has finished, and then executes
automatically.

The queue contains a maximum of 64 items, so if a 65th request reaches the queue, it is blocked until the
queue is opened.
for (i = 0; i<100; i++)
Loadl mage(....);

In this example, the 65th Loadlmage is blocked until the first Loadlmage is completed and the waiting
queue is available.

Primitives
The smallest command that the graphics system can handle is called a primitive (or a packet). Primitives are

data structures that are created and stored in main memory, and the CPU and the GPU may both refer to
them at the same time.

Primitives are classified as one of the following:

» Drawing primitives actually draw pixels in the frame buffer.

» Special primitives change certain parameters of the GPU, such as the clipping area and texture page,
while drawing is being done. They do not directly change the contents of the frame buffer.

Drawing Primitives
The drawing primitives are listed below. There are four different types of drawing primitive: Polygon, Line,
Sprite, and Tile.

Polygon Primitives

When drawing polygons, you can choose:

* Number of sides (3 or 4)
e Shading (Gouraud or flat)
» Texture mapping (on or off)

Therefore, the following polygon primitives can be used:

Table 8-3: Polygon Primitives

Primitive name Contents

POLY_F3 3-sided polygon (triangle), flat shaded

POLY_FT3 3-sided polygon (triangle), flat shaded, textured
POLY_G3 3-sided polygon (triangle), Gouraud shaded
POLY_GTS3 3-sided polygon (triangle), Gouraud shaded, textured
POLY_F4 4-sided polygon (quad), flat shaded

POLY_FT4 4-sided polygon (quad), flat shaded, textured
POLY_G4 4-sided polygon (quad), Gouraud shaded
POLY_GT4 4-sided polygon (quad), Gouraud shaded, textured

CONFIDENTIAL Run-Time Library Overview

8-10 Basic Graphics Library

Line Primitives

Line primitives draw straight lines.

Table 8-4: Line Primitives

Primitive name Contents

LINE_F2 A straight line between two points

LINE_G2 Same as LINE_F2, except with color gradation

LINE_F3 Two connected lines running from points A to B, then Bto C
LINE_G3 Same as LINE_F3, except with color gradation

LINE_F4 Three connected lines running from points Ato B, Bto C, and Cto D
LINE_G4 Same as LINE_F4, except with color gradation

Sprite and Tile Primitives

These primitives are used for drawing rectangular areas. Tiles are drawn with a solid color, while sprites are
texture-mapped.

Table 8-5: Sprite Primitives

Primitive Name Contents

SPRT Texture-mapped Sprite (free any size)
SPRT_8 Texture-mapped Sprite (fixed size of 8 x 8 pixels)
SPRT_16 Texture-mapped Sprite (fixed size of 16 x 16 pixels)
TILE Non-textured solid color tile (free any size)
TILE_1 Non-textured solid color tile

(fixed size of 1 pixel by 1 pixel, i.e. a single dot)
TILE_8 Non-textured Solid color tile (fixed size of 8 x 8 pixels)
TILE_16 Non-textured Solid color tile (fixed size of 16 x 16 pixels)

Special Primitives
Special primitives change all or part of the drawing environment during drawing.

Table 8-6: Special Primitives

Primitive name Parameter to be changed Corresponding DRAWENYV members
DR_ENV Changes drawing All members
environment
DR_MODE Drawing, texture mode tpage, dtd, dfe, tw
DR_TWIN Texture window tw
DR_AREA Drawing area clip
DR_OFFSET Drawing offset offset

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-11

Primitive Expression Format

Primitives are defined as C structures. The first two words of all drawing primitives are the same:
t ypedef struct

{

unsi gned | ong *tag;

unsi gned char r0, g0, b0, code;
} P_TAG

t ag represents an internal pointer to the next primitive. It allows primitives to be grouped in a linked list
structure so that multiple primitives can be executed together.

The following is an example of a complete primitive structure. POLY_FT4 is defined as a four-sided, flat,
textured polygon:

t ypedef struct
{

unsi gned | ong *tag;

unsi gned char r0, g0, b0, code;

short x0, yoO;

unsi gned char u0, vO;

unsi gned short clut;

short x1, y1;

unsi gned char ul, vi;

unsi gned short tpage;

short x2, y2;

unsi gned char u2, v2

unsi gned short padl;

short x3, y3;

unsi gned char u3, v3;

unsi gned short pad2
} POLY_FT4;

tag: Top 8-bits: Number of GPU words in packet
Bottom 24-bits: pointer to next primitive

code: primitive identifier (system reserved value)

r0, go, bO: display color (Red, Green, Blue, values 0-255)
t page: texture page ID

clut: CLUT (Color Look-Up Table) ID

x0, y0, ...x3,y3: Screen coordinates of polygon vertices

uo, vO, ... u3,v3: Coordinates within texture page for texture
padl, pad2: Reserved, must be set to 0

Initializing Primitives and Setting Their Members

Primitives must be initialized before they can be executed. When initializing a primitive, call the initializing
function for that particular type of primitive; these functions set the tag, code, and pad members
appropriately. For example, before drawing a POLY_FT4 (rectangular, flat-shaded, textured polygon)
primitive, initialize it as follows:

POLY FT4 ft4
Set Pol yFT4(&f t 4);

Most of the members of each primitive may be freely written to by your application unless specified as
reserved. There are numerous macros provided in | i bgpu. h for setting primitive members. For example,
examples 1 and 2 below generate the same code. For details, refer to | i bgpu. h.

CONFIDENTIAL Run-Time Library Overview

8-12 Basic Graphics Library

Example 1
POLY_F4 f4;
Set Pol yF4(&f 4) ; [*initialize primtive*/

set RGBO(&f 4, 0, 0, 255); /I*R,GB =0, 0, 255*/
set XY4(&f 4, 0, 0, 100, O, O, 100, 100, 100);

DrawPri n(&f 4) ; [*execute primtive*/
Example 2

POLY_F4 f4;

Set Pol yF4(&f 4) ; /*initialize primtive*/

fa.r = 0; /*These 3 |lines are*/

f4.9 = 0; /*the same as doi ng*/

f4.b = 255; / *set RGBO(&f 4, 0, 0, 255) */

f4.x0 = 0; /*These 8 |ines are*/

f4.y0 = 0; /*the same as doi ng*/

f4.x1 = 100; / *set XY4(&f4,0,0, 100, 0, */

fda.yl = 0; /*0, 100, 100, 100); */

f4.x2 = 0;

f4.y2 = 100;

f4.x3 = 100;

f4.y3 = 100;

DrawPri n{ &f 4) ; /*execute primtive*/

Primitive Attributes
The following attributes may be set for primitives:

SemiTrans - Semi-transparent mode
ShadeTex - Inhibits simultaneous texture mapping and shading

You can use SetSemiTrans() and SetShadeTex() to set or clear these attributes for each primitive, as shown
below. These functions may be called at any time between initialization and execution of the primitive.

POLY_F4 f4;

Set Pol yF4(&f 4) ; [*initialization*/

Set Semi Trans(&f 4, 1); /*make into sem -transparent primtive*/
Set ShadeTex(&f 4, 1); [*turn shadi ng OFF*/

Combining Primitives

Many primitives may be used in combination with other primitives; two primitives may be brought together

to form a single new primitive. This is done using the MargePrim() function.
t ypedef struct

{
DR_MODE node; [*set node primtive*/
SPRT sprt; [*Sprite primtive*/
} TSPRT;
set TSPRT (TSPRT *p, int dfe, int dtd, int tpage, RECT *tw)
{
Set Dr awvbde(&p- >node, dfe, dtd, tpage, tw);
Set Sprt (&p- >sprt);
return(MargePri m &- >node, &p->sprt));
}

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library

The setTSPRT/() function initializes a new user-defined primitive called TSPRT. A primitive TSPRT initialized
in this manner can be used with AddPrim() and DrawPrim() in the same manner as other primitives.

Note: A combined primitive may not be more than 16 long words in total size.

Executing Primitives
Primitives that have been initialized may be executed individually with the DrawPrim() function as in the
following example.

POLY_F4 f4;

Set Pol yF4(&f 4) ;

set Xy4(&fr, 0, 0, 100, O, O, 100, 100, 100); /*(0,0)-(100,100)*/
set RGBO(&f 4, Oxff, 0x00, 0x00); /*RG&B = (255, 0, 0)*/
Dr awPri n{ &f 4) ; [*drawr/

When displaying multiple primitives, the order of execution determines the display priority, because when a
primitive is executed it is drawn on top of previously drawn primitives.

In the following example, prim[0] is displayed furthest back and prim[99] is displayed furthest forward.

for (i = 0; i<100; i++)
DrawPrim(&prinfi]);

However, multiple primitives are usually stored as a linked list in an ordering table and executed together
using the DrawOTag() function. See “Ordering Tables” for more information.

Primitive Drawing Rules

The pixels drawn for a primitive are those where the center of each pixel lies within the boundary of the
polygon vertices. When the center of a pixel is outside this area, the following rules are used:

* If the pixel to the right is inside the drawing area --> can be drawn

» If the pixel to the left is inside the drawing area --> cannot be drawn
* [fthe pixel above is inside the drawing area --> cannot be drawn

» If the pixel below is inside the drawing area --> 33 can be drawn

With POLY_* primitives, the extreme right and lowest points cannot be drawn. In the case of drawing a
quadrilateral, the rules apply as follows:

Figure 8-5: Drawing a Quadrilateral

Drawini; allowed

Drawing —> <+— Drawing
allowed not allowed

!

Drawing not allowed

This ensures that the pixels along the polygon boundary are not drawn more than once when polygons are
placed next to each other.

See “Texture Polygon Coordinate Specification” for more information on drawing rules involving texture
mapping.

CONFIDENTIAL Run-Time Library Overview

8-14 Basic Graphics Library

Ordering Tables

In order to more easily control the order of execution for large numbers of primitives, the graphics library
uses a mechanism known as an ordering table (OT). The ordering table is a variation of a basic linked list,
designed to allow easy insertion of drawing primitives which represent portions of a three-dimensional
display.

Primitives can be registered in an ordering table with AddPrim() or AddPrims(). The registered primitives are
then executed using DrawOTag(). Since DrawOTag()is a non-blocking function, the CPU can perform
further processing without waiting for the completion of drawing by the GPU.

The OT consists of an array of pointers to primitives held in main memory. Its size is determined by the
required resolution of the display priority. For example, the following example creates an ordering table with
256 levels of priority:

unsi gned | ong ot [256];
Cl ear OTag(ot, 256); /* initialize the O */

ClearOTag() converts the basic array into a simple linked list, as shown below, where (Endof Pri njis a
special value used to indicate the end of the list of primitives:
ot[0]-> ot[1] -> ... -> ot[255] -> (EndofPrim

Registering Primitives in the OT

Before drawing, primitives must be registered in the OT with AddPrim():
AddPrim (ot + i, &urim; [* AddPrim(&ot[i], &prin);*/

The execution priority of each primitive is determined by its position in the OT. The primitives at the start of
the OT will be executed first (and hence displayed furthest back), and the primitives at the end of the OT will
be executed last (and hence displayed furthest forward).

In the following example, the primitives p1 and p2 are registered in the OT. Then DrawQOTag() is called to
execute the primitives in the table. p1 is executed first (displayed furthest back on the screen) and p2 is
executed last(displayed furthest forward, i.e. it overwrites any primitives already drawn).

unsi gned | ong ot [256]; [*OT (256 entries)*/

Cl earOTag(ot, 256); [*OT initialization*/
AddPrim(&t [0], pl); /*register primtive pl in ot[0]*/
AddPri m(&ot [255], p2); /*register primtive p in ot[255]*/
Dr awOTag(ot) ; [*execute primtives in OI*/

Multiple primitives may be registered in the same OT entry. In this case, primitives will be executed after the
primitives subsequently registered in the same entry. In the following example, primitives will be executed in
the order p0, p3, p2, p1, p4.

AddPrim (&ot[2], pO); [*register in ot[2]*/
AddPrim (&ot[3], pl); /*register in ot[3]*/
AddPrim (&ot[3], p2); /*register in ot[3]*/
AddPrim (&ot[3], p3); [*register in ot[3]*/
AddPrim (&ot[4], p4); /*register in ot[4]*/

Registering Special Primitives

Special primitives can be used to switch all or part of the drawing environment during the drawing process.
These special primitives, like normal primitives, may be registered in the OT, then executed together with
normal primitives using the DrawOTag() function.

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library

The scope of the special primitives depends on their location in the ordering table. In the following example
the env primitive setting is valid for execution of primitives registered after ot [128] ; therefore only p2
receives the influence of the env primitive.

AddPrim(&ot[0], &pl); /*register drawing primtive pl*/
AddPri m(&ot [128], &env); [*register special primtive env*/
AddPri m(&ot [255], &p2); /*register drawing primtive p2*/
Dr awOTag(ot) ;

Linking Primitives Without an OT

You may set up your own linked list of primitives rather than using the ordering table structure. Such a list
may still be executed using DrawQOTag(). For example, the following provides the same operation as

DrawPrim().
myDrawPri m{void *p)
{
TernPrim(p); /* terminate the primtive */
Dr awOTag(p) ; /* list and execute it. */
}
drawSprites(SPRT *p, int n)
{
int i;
for (i =0; i < n-1; i++, p++)
CatPrim(p, p+l); /* link primtive pto primtive p+l */
TernPrimp);
Dr awOTag(p) ;
}
Note that when you link primitives directly to one another, you give up the flexibility of the ordering table
structure.

Ordering Tables and Z Sorting

You can use an OT to implement Z sorting, which is a method of eliminating hidden surfaces by sorting a
list of primitives by their depth (z-value) in 3D space. To do this, you calculate a primitive’s position in the
OT from its Z-value, as shown in this example:

unsi gned | ong *ot[256];

AddPri m(ot +256- 20, p0) ;

In the basic geometry library (libgte), many of the functions calculate an otz value (to help create a
Z-ordered OT) while performing 3-dimensional coordinate conversion.

SVECTOR X3, Xx2;
int flg, otz;

otz = Rot TransPers(&x3, (long*)&x2, &flg);

In this case, the RotTransPers() function performs coordinate and transparent conversion of the
3-dimensional values pointed at by x3, using the current matrix, and stores the 2-dimensional coordinates
obtained at x2. At the same time it returns an index to the OT called otz. The otz value is the Z coordinate
divided by 4; therefore, it is sufficient to provide an OT with 1/4 of the dynamic range of the actual Z-depth.
By making use of otz, a 3-dimensional Z sort can be performed at high speed.

CONFIDENTIAL Run-Time Library Overview

8-16 Basic Graphics Library

Reverse OT

The otz variable takes a large value for distant objects; as they get closer, the value approaches zero.
Because of this, it is necessary to invert the value of otz before using it as an index into the OT array. To
avoid this, the libraries make it possible to reverse the order of the entries in the OT. The ClearOTagRI()
function initializes the OT in reverse order. Then the order of OT execution will be reversed.

The ClearOTag() function will initialize the OT array as follows:

Cl ear OTag(ot, OTSI ZE)
ot[0]-> ot[1] ->ot[2] -> ... -> ot[OTSIZE-1] -> (EndofPrim

The ClearOTagR() function will initialize the OT array as follows:

Cl ear OTagR(ot, OISl ZE)
ot[OTSI ZE-1]-> ot[OTSI ZE-2] -> ... -> ot[0] -> (EndofPrim

When using ClearOTagR(), the parameters you pass to other functions are changed accordingly, as shown
in the table below:

Table 8-7: OT
Using ClearOTag() Using ClearOTagR()
#define OTSIZE 1024 #define OTSIZE 1024
unsigned long *ot[OTSIZE]; unsigned long *ot[OTSIZE];
ClearOTag (ot,OTSIZE); ClearOTagR (ot, OTSIZE);

AddPrim (ot+OTSIZE-otz, &prim);
AddPrim (ot+otz, &prim);

DrawOTag (ot); DrawOTag (ot+OTSIZE-1);

Note how the pointers into the OT are done differently when using ClearOTagR(). In particular, the
calculations required to calculate the index into the OT for the AddPrim function are simpler, and since this
function is likely to be called very often, the result is a net savings.

The normal order OT is most often used for 2-dimensional graphics applications such as sprite-based
games, where the position of each primitive is not necessarily based on a position in 3D space. The reverse
order OT is used more often for 3-dimensional graphics applications where the Z-depth of the 3D
calculations correspond more directly to positions within the OT.

The reverse order OT is initialized via a high speed hardware function, whereas the normal order OT is
initialized via software. Because of this, large OT arrays are initialized much more quickly if they are reverse
order.

Combining with Geometry Functions

To display three-dimensional objects, each object is broken up into combinations of triangles and
quadrilaterals, and the coordinates of each polygon determine the position of the corresponding primitive
which must be drawn. In other words, the (X,y) coordinates of the primitive in the frame buffer are obtained
from the 3D coordinates of a polygon component of an object. This coordinate transformation is performed
by the geometry library.

Object movement/rotation, and viewpoint movement/rotation may be described in a single rotation matrix
and movement vector. The vertices of the polygons which make up the objects are described below.

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library

Figure 8-6: Polygon Vertex Format

[($x[] MO0 mO1 mO2 0 [Wx[I [Ox0

y%: %mo m11mi2 % B’Vy% %y%
BxH Fn20 m21m22 5§ BvzH BzH

(Wx, Wy, Wz): - Coordinate position in world coordinates
(Sx, Sy, Sz): - Coordinate position in screen coordinates
(mQO,...,m22): - Rotation matrix

The primitive which is drawn is actually a projection onto a two-dimensional plane (the screen). The screen
is an imaginary plane a certain distance h from the point of view. This process is known as perspective
transformation.

Figure 8-7: Perspective Transformation

Ox O hxSx/Sz

Oy EFhxsy/szh

Btz H Sz/4 H

Here the calculated (x, y) are the (x, y) members of the primitive and otz is an OT entry. See the libgte
documentation for details. Following is an example of a function performing this operation.

voi d rot TransPer sAddPri m(

SVECTOR *pos; [*posi tion*/
SPRT *sp; [*Sprite primtive*/
unsi gned | ong *ot; [*Or*/
int ot_size) [*size of OT*/
{
long otz, dny, flg;
otz = Rot TransPers(&(pppos->x[0],,
(long*)sp ->x0, &dny, & 1 g);
if (otz >0 & otz < ot_size)
AddPri m(ot +otz, sp);
}
Multiple OTs

An entire OT can be inserted into another OT if desired. This method is valid for using more than one
hierarchical coordinate system at once.

The following example connects the child-OT ot7 with a length of n to the parent-OT ot0.

AddOT(unsi gned | ong *ot0, unsigned long *otl, int n)
{

}

However, since the link destination for ot1[n-1] is replaced with the ot0 link destination in AddPrims(otO,
ot1+n-1), in certain cases, the primitive linked to ot1[n-1] is not rendered. As a result, the primitive must not
be registered in the final ot1 entry.

AddPrims(ot0, otl, otl+n-1);

CONFIDENTIAL Run-Time Library Overview

8-18 Basic Graphics Library

Synchronization and Reset

Reset

To reset the graphics system, call ResetGraph(). This function takes one parameter, which determines the
reset level. All levels immediately interrupt the drawing command in progress, cancel all the requests
remaining in the queue, and enter wait status.

Level O (ResetGraph (0)) Completely resets the graphics system. It should be executed only once,
when the program is activated. The drawing command and queue commands are cancelled and
callbacks are initialized. The display mode is initialized at 256x240 and the display is masked (the
screen goes black.)

Level 1 (ResetGraph (1)) Cancels the command currently being executed and the commands
remaining in the queue. The drawing environment and display environment are preserved. This level is
used frequently when switching the double buffer.

Level 3 (ResetGraph (3)) Equivalent to Level O complete reset, except that the display environment
and the drawing environment are preserved. Also, the display is not masked. This level is used to
initialize all child processes while saving the display screen status set by the parent processes. When
shifting control from parent processes to child processes using Exec(), a complete reset is needed in
order to switch the callback, but with a level O reset, the display is also initialized. Therefore, once the
display synchronization misses, the screen becomes disturbed when shifting to child processes. In
order to avoid this, child processes should be initialized using ResetGraph(3) at the start, rather than
ResetGraph(0).

Below is a summary of the above points:

Table 8-8: Reset Levels

Reset Level Callback DISPENV DRAWENV command queue
0 Initialize Initialize Initialize Initialize

1 Save Save Save Initialize

3 InitializeSave Save Initialize

Synchronization

In order to provide a smooth display, programs need a way to synchronize their graphics operations (and
other processing) to the vertical blank period of the video display. In addition, programs need a method of
detecting the end of drawing operations being performed in the background; that is, non-blocking functions
such as DrawOTag().

There are two methods for detecting when asynchronous events have occurred:

Polling

Polling: that is, checking to see whether the event has occurred.
Callbacks: setting up functions that are automatically executed when the event occurs.

The DrawSync() function allows you to detect the end of drawing operations. It has the following options:

DrawSync (0) - Blocks until all requests remaining in the queue are finished.
DrawSync (1) - Returns the number of positions in the drawing queue.

CONFIDENTIAL

Run-Time Library Overview

Basic Graphics Library 8-19

The VSync() function allows you to detect the next vertical blank period, as well as providing other
information. It can be used in several different ways:

* VSync (0) - Block until the next vertical blank period begins.

* VSync (1) - Return the number of horizontal sync units since the previous VSync(0) or VSync(n) call.

* VSync (n) - Where n>0, waits for the nth vertical blank period. (VSync(0) waits for the next VB period.
VSync(2) waits for the 2™ VB period, etc.)

* VSync (-n) - Where n<0, returns the number of vertical blank periods since the program was started.

Callbacks

A callback is a function that is called when background processing has been completed. Libgpu provides
two functions that let you register callbacks:

Table 8-9: libgpu callback registering functions

Function Name Trigger
VSyncCallback() Vertical Synchronization
DrawSyncCallback() Drawing completion

DrawSyncCallback lets you define a function that is called at the completion of a non-blocking drawing
operation such as DrawOTag().

VSyncCallback() lets you define a function that is called at the beginning of the vertical blank period. This
function can be used to switch the display from one buffer to another and to perform other graphics
operations which much be synchronized in this fashion.

int buffer = 0; /*Active buffer indicator*/
int new franme_is_ready = 0; /*“ready to switch buffers” flag*/

voi d mai n()

{ /*initialization routine entered here*/
VSyncCal | back(vbcal | back); / *defi nes cal | back routine*/
}
vbcal | back()
{
if(new frame_is_ready) /*This is set within our*/
{ / *Dr awSyncCal | back function*/
/*(not shown here)
buffer = 1 - buffer; /*Swi tch buffers*/

Put Di spEnv(&db[buffer].disp);
Put Dr awenv(&b[buf fer] . draw);
new frane_is_ready = O; / *Reset flag*/

CONFIDENTIAL Run-Time Library Overview

8-20

Run-Time Library Overview

Basic Graphics Library

In the following code, the callback routine increments a counter. The routine MyVSync(), by looping until the
counter changes, is functionally equivalent to Vsync(0).

mai n() {
/* Initialization routine entered here */
VSyncCal | back (call back); /* Define callback */

while (1) {
/* Processing carried out within the frane entered here */
nyVvsync() ;
}
}
static volatile int Vsync_Count = 0; /* Vertical Synchronization counter */
voi d myVSync(void) ({ /* Blocks until Vsync_Count variable
i s updated */
int i = Vsync_Count;
while (i == Vsync_Count);
voi d cal | back() { /* Counter increases when verti cal
synchroni zation is started */
Vsync_Count ++;
}

Frame Synchronization

To avoid screen flicker, the drawing and display buffers should be switched at the same time as the vertical
synchronization. DrawSync() and Vsync() are used to accomplish this.

/* (1) After drawi ng has concluded, waits until the next vertical
synchroni zation and starts the next draw ng */

Dr awSync(0) ;

Vsync(0)

Draw0Tag(ot);

/* (2) Regardl ess of whether draw ng has concluded or not, waits until
the next vertical synchronization and starts the next draw ng */

Vsync(0);

Reset Graph(1);

Draw0Tag(ot);

/* (3) Regardl ess of whether draw ng has concluded or not, waits until
the next 2 vertical synchronizations and starts the next drawi ng */

Vsync(2);

Reset Graph (1);

Draw0Tag (ot);

Please note that drawing at 60 frames/second in example (2) is not guaranteed. Drawing at 60 frames can
be achieved only when the CPU processing terminates in 1/60 second. Also, note that in example (3),
counting from the Vsync called immediately prior to the Vsync(2) blocks for two frameblockss.

CONFIDENTIAL

Basic Graphics Library

Packet Double Buffer

The general term for the area in memory used for the OT and primitives is packet buffer.

Waiting for primitives to be drawn after they have been registered in the OT makes it impossible to operate
the CPU and the graphics system in parallel. The primitives and OT cannot be accessed by the CPU until
after the graphics system has finished processing them.

Figure 8-8: Drawing After Registering in OT

CPU Registering in OT| Registering in OT|

GPU OT drawing

Operating the graphic system and the CPU in parallel requires two packet buffers, one is used to contain
the OT and primitives currently being generated, the other is used for the OT and primitives which were
previously generated and which are now being executed by the graphics system. The two packet buffers
assume the tasks of drawing and execution alternately. This is referred to as a packet double buffer
system.

Figure 8-9: Packet Double Buffer

CPU Registering Registering Registering
in OT #0 in OT #1 in OT #0
A 4 A\ 4 A 4 Y
GPU Drawing Drawing Drawing
of OT #1 of OT #0 of OT#1

This is a packet double buffer. An example of a packet double buffer is given below. The OT and primitive
must be combined together when using a packet double buffer.

t ypedef struct{

unsi gned | ong ot [256]; [*Or*/
SPRT sprt[256]; /*Sprite Primtive*/
} DB
mai n() {
int j;
DB db[2], *cdb;
cdb = db[O0];
while (1) {
cdb=(cdb==db) ? db+1: db; /*switch buffers*/
Cl ear OTag(cdb->ot); [*cl ear OT*/
for(j=0; j<256; j++){ /*register Sprites in OT*/

[*at this point, calculate the Sprite position*/
AddPri m(cdb->ot, cdb->sprt[j];

}
Dr awOTag(cdb- >ot) ; [*Drawr/

CONFIDENTIAL Run-Time Library Overview

8-21

8-22 Basic Graphics Library

Asynchronous Double Buffer

Normally, the packet double buffer is switched at the completion of drawing. When using interlace mode,
however, drawing must be updated every 1/60 second, regardless of the calculation/rendering time. In
such cases, callbacks can be used to forcibly carry out redrawing.

/ * Asynchr onous Dr awOTag:
*The specified OF waits for the next VSync and is executed.

*/
mai n() {
VSyncCal | back (call back);
while (1) {
/[*Create primtive list*/
Dr awSync(0) ;
make_packet () ;
unsyncDr awOTag(ot) ;
}
}

static void *conpleted_ot = 0;
unsyncDrawOTag (void *ot)
{

}
void cal | back (void) {

if (conpleted_ot) ({
ode_patch();
Reset Graph (1); /* stop drawi ng */
DrawOTagR (conpl eted_ot); /*

conpl eted_ot = ot;

}
}
/*Patch for interlace double buffer.
*/
static void ode_patch (void)
{
static int ode = O;
DRAVENV dr aw,
Get Di spEnv (&dr aw) ;
if (draw dfe) {
whil e (Get ODE() ==ode);
ode = (ode+1l) &0x01;
}
}

In this example, DrawQTag is executed in each field regardless of the load on the CPU. However, when
updating of the OT was not performed in time, the previous OT will be reused.

Note: The purpose of ode_pat ch() is to adjust for a problem in VSync timing when switching the
odd/even fields in interlace mode; see “VSync Synchronization in Interlace Mode” for details.

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-23

Texture Mapping

Texture mapping is a method of mapping a two-dimensional bitmapped image known as a texture pattern
onto the surfaces of triangles and quadrilaterals.

Textures are stored in areas of the frame buffer (outside the display and drawing areas) called texture
pages. A texture page consists of a 256 x 256 bitmap. Its upper left X coordinate in the frame buffer must
be a multiple of 64 and the Y coordinate a multiple of 256. (Therefore, it's possible for texture pages to
overlap horizontally.)

Texture Pattern Format

There are three pixel format modes used in texture patterns, as shown in the table below. Each primitive
may have a different mode.

Table 8-10: Texture Pattern Modes

Mode Type Colors Texture page width
4-bit CLUT-based 16 64

8-bit CLUT-based 256 128

16-bit Direct RGB 32767 256

In 16-bit mode, the pixel value from the texture is used directly: 15 bits are used for RGB color information,
allowing 32767 colors, plus 1 bit to specify semi-transparent status for that pixel.

The 4-bit and 8-bit texture modes use a color lookup table (CLUT), also known as a palette, to specify the
actual color values. Each pixel value in these modes is used as an index into the appropriate CLUT. The
CLUT itself a series of 16-bit pixel values arranged in a horizontal format within the frame buffer. Each
16-bit pixel value represents one of the colors to be used for the texture. A 4-bit texture requires a CLUT
with 16 consecutive entries, and an 8-bit texture requires a CLUT with 256 consecutive entries.

16-bit textures are stored with one pixel per 16-bit word, while 8-bit textures store 2 pixels in each word,
and 4-bit textures store 4 pixels in each word, as shown in the figure below. Since a 256 x 256 pixel texture
pattern is placed in 1 texture page, the area actually occupied by a texture page in the frame buffer varies
from 256 x 256 (16-bit mode) to 64 x 256 (4-bit mode).

CONFIDENTIAL Run-Time Library Overview

8-24 Basic Graphics Library

Figure 8-10: Texture Pattern Format

(a) 4bit mode (pseudo color)

15 12 1 8 7 4 3 0

1 1 1 1 11 I I
pIx3 pix2 pix1 pix!)
[1 | [1 | [1 | [1 |

(b) 8bit mode (pseudo color)

15 8 7 0

[I
IIIpixI [IIIpixOIII

(c) 16bit mode (direct color)

15 14 10 9 5 4 0

S B G R

S: semi-transparent (STP) bit

When using 4-bit and 8-bit textures, the coordinates of the texture pattern (U,V) and the coordinates in the
frame buffer will not directly map to each other. Care must be taken, when using Loadlmage(), to load
texture patterns into the frame buffer. The same applies to Movelmage() and Storelmage().

The rectangular area specified for these functions is based on standard frame buffer coordinates using
16-bit pixels. For 4-bit textures, the rectangle width must be divided by 4. For 8-bit textures it must be
divided by 2. This means that 8-bit textures must be an even multiple of 2 pixels in width, and that 4-bit
textures must be an even multiple of 4 pixels in width.

The following code sample illustrates texture mapping on a quadrilateral:
POLY_FT4 ft 4;

Set Pol yFT4(&f t 4); [*initialize primtive */
ft4.tpage = GetTpage (0, O, 640, 0); /*texture page = (640,0)*/
ftd4.clut = Getd ut (0, 480); /[*texture CLUT = (0, 480)*/

/* texture pattern within the (x,y) = (0,0) - (256, 256) is
/* textured mapped to (u,v) = (0,0)-(128,128) within the */
/* texture page */

set Xy4(&ft4, 0, 0, 256, 0, 0, 256, 256, 256);
setuUv4(&ft4, 0, 0, 128, 0, 0, 128, 128, 128);

DrawPrinm(&ft 4); [*execute primtive*/

Note: GetTPage() and GetClut() require that Loadlmage() be used to load the texture and texture CLUT in
advance. LoadTPage() and LoadClut() load the texture page and texture CLUT and return the texture page
ID and the texture CLUT ID respectively.

Texture CLUTs may be set independently for each primitive regardless of the texture to be used. Multiple
textures may use the same CLUT. A 4-bit texture can use any 16 entries from a larger CLUT.

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-25

Setting the Current Texture Page
Unlike polygons, sprite primitives (SPRT) do not specify a texture page. Therefore, you must make sure the
current texture page is set correctly when executing sprites.
You can specify the initial current texture page in the drawing environment. The special primitive DR_MODE
can be used to explicitly change the current texture page. This switches the current texture page mode.
DR_MODE dr _node; /*mode primtive*/
SPRT16 sprt; [*16 x 16 Sprite primtive*/

Set Dr awivbde(* &dr _node, 0, 0, GetTPage(2, 0, 640, 0), 0);
Set Sprt 16(&sprt);
set XYQ(&sprt, 100, 100);

Cl ear OTag(ot, 2);

AddPrimot + 1, &sprt); [*register SPRT16 in ot[1]*/
AddPrimot + 1, &dr_node); /*register DR.MODE in ot[1]*/
Dr awOTag(ot) ;

Note that two primitives are registered in the same OT entry. The latest one registered (DR_MODE) is
executed first.

Transparent Pixels and Semi-Transparent Pixels

You may select transparent, opaque or semi-transparent for each pixel when performing texture mapping.
The high bit (bit 15) of each pixel value (or the corresponding CLUT entry in 4 and 8-bit mode) is the semi-
transparent (STP) bit.

When the pixel value of the texture pattern is 0x0000 (STP, R, G and B are all zero), the pixels are
transparent and therefore not drawn.

Pixels with the STP bit set to 1 will be displayed as semi-transparent, if the primitive they are mapped onto
is set in semi-transparent mode with the SetSemiTrans() function. Pixels with the STP bit set to 0 but not
with R, G and B all zero will always be opaque.

Table 8-11: Transparent/Semi-Transparent Pixels

STP, B, G, R (0,0,0,0) (1,0,0,0) O,n,n,n) (1,n,n,n)
Non-transparent Transparent Black Non-transparent ~ Non-
primitive transparent
Semi-transparent Transparent Semi- Non-transparent ~ Semi
primitive transparent black transparent

Primitives that do not use texture mapping may also be set to semi-transparent mode using
SetSemiTrans(). In these cases, the primitive’s pixels will all be semi-transparent.

Note: The processing speed of semi-transparent polygons is greatly reduced, because the existing pixels
in the frame buffer must be read, processed, and then written back.

The rates of semi-transparent primitives are specified in primitive units. Below is a list of semi-transparency
rates which may be specified.

Table 8-12: Semi-Transparency Rates

Background Brightness Value Primitive Brightness Value
0.5 0.5

1.0 1.0

1.0 -1.0

1.0 0.25

CONFIDENTIAL Run-Time Library Overview

8-26 Basic Graphics Library

The brightness value is clipped when it exceeds the maximum value. Semi-transparency rates may be used
specified by the texture page specified using the DR_MODE primitive. The same rate is applied to primitives
that do not perform texture mapping.

See the section above on “Primitive Attributes” for more information.

Texture-Mapping Primitive Brightness Values

In the case of a texture-mapped primitive, the texture pattern brightness value of the pixels of a polygon is
specified by the (r, g, b) members of the primitives. These values taken together comprise the actual
brightness value.

The brightness value of a pixel being drawn is calculated from the corresponding texture pattern pixel value
and the brightness value specified by the (r,g,b) members of the primitive, as shown below:

T = Texture pattern pixel value

L

Bri ght ness val ue of the pixel as specified by the R G B fields
of the primtive.

P= (T*L)/128

In other words, if the (r, g, b) fields of the primitive are all set to 128, then all the pixels drawn will be the
same brightness value as the source texture. If the resulting brightness value (P) exceeds 255, it will be
clipped to a maximum value of 255.

Either the r, g, b members must be set, or this option must be prohibited using the SetShadeTex() function
when a texture mapping primitive is initialized.

POLY FT4 ft4;

Set Pol yFT4(&f 4) ; /*initializes the primtive*/

Set RGBO(& T4, 0x80, 0x80, 0x80); /*initializes the RGB val ues*/
[*or*/
Set ShadeTex(&ft4, 1); /*inhi bit shadi ng*/

Repeating Texture Patterns

It is possible to set one portion of a texture page as a texture window and within that space wrap round
(repeat) a texture pattern.

Setting a texture window can be done when setting the drawing environment through the tw field of the
DRAWENV structure, or by using the DR_MODE primitive. Please refer to the following example.

Texture windows are normally set to (0,0) - (255, 255), which causes the texture not to be repeated. Setting
the texture window to a smaller region will cause the texture to be repeated as necessary when drawing a
primitive.

When specifying a texture window in order to repeat a texture, the texture coordinates (U,V) of the primitive
should be within the texture window.

u_short tws[2], twe[2];

DR_MODE dr _node; /*drawi ng node primtive*/
tws[0] = tws[1l] = 32; /*texture wi ndow (32, 32)- (64, 64)*/
tws[0] = tws[1l] = 64;

/*initialization drawing node primtive*/
Set Dr awbde(&dr _node, 0, 0, Cet TPage(0, 0, 640, 0), tws, twe);

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-27

AddPri m(ot +n, &dr_node);

Texture Cache

When rendering a texture-mapped polygon, the texture pattern must be read from the frame buffer. To
improve rendering speed, the PlayStation’s GPU contains a 2K high-speed texture cache. When textures
are used, they are read from the frame buffer into the cache. Subsequent uses of the same texture pixels
(texels) are read directly from the cache, which is much faster than reading from the frame buffer.

Like the frame buffer, textures in the texture cache are referred to by two-dimensional addresses. These
addresses depend on the pixel mode of the polygon being drawn. The following table shows the cache
sizes for each pixel mode:

Table 8-13: Texture Cache Size

Pixel Mode Size (width x length)
4 bit/pixel 64x64
8 64x32
16 32x32

Primitive Rendering Speed

To improve rendering speed on the PlayStation, it’s necessary to determine which is slower, the rendering
speed of the GPU or the computation speed of the CPU. This can be determined by calling DrawSync().

» If the speed bottleneck is in the CPU, DrawSync() returns immediately.
» If the speed bottleneck is in the GPU, DrawSync() is blocked; that is, it doesn’t return immediately.

The amount of time DrawSync() is forced to wait is a measure of the latency through the GPU.

When the bottleneck is in the GPU, program code optimization will not improve performance, so a means
for improving rendering speed is necessary.

This section explains a few of the factors that determine the rendering performance of the GPU and general
methods for improving rendering speed.

In the PlayStation, frames are first rendered in the frame buffer, then output to the display. Therefore,
rendering performance can be determined essentially from the number of read and write accesses to
VRAM (Video RAM).

The rendering (execution) speed of a specific primitive depends on its area and type. Primitive rendering
consists of repeated reads and writes to the frame buffer VRAM. The larger the area of the primitive, the
greater the amount of VRAM written and hence the greater the rendering time. Semi-transparent rendering
is slower than opaque rendering of the same primitive, since semi-transparent rendering requires read
access as well as write access.

The rendering speed depends on the primitive type. The execution speed of primitives with the same
rendering area are in the following order:

CONFIDENTIAL Run-Time Library Overview

8-28 Basic Graphics Library

Figure 8-11: Primitive Rendering Speed

High speed <— —> Low speed

TILE

POLY_F* POLY_G*
POLY_FT*(4bit/OnC) POLY_FT*(4bit/OffC)
POLY_FT*(8bit/OnC) POLY_FT*(8bit/OffC)
POLY_FT*(16bit/OnC) POLY_FT*(16bit/OffC)
POLY_GT*(4bit/OnC) POLY_GT*(4bit/OffC)
POLY_GT*(8bit/OnC) POLY_GT*(8bit/OffC)
POLY_GT*(16bit/OnC) POLY_GT*(16bit/OffC

SPRT(4bit/OnC) SPRT(4bit/OffC)

SPRT(8bit/OnC) SPRT(8bit/OffC)

SPRT(16bit’OnC) SPRT(16bit/OffC)

OnC indicates that the texture cache is in hit status, and OffC indicates that the texture cache is in miss
status, while 4bit/8bit/16bit indicates the texture mode. Rendering speed is always faster in cache hit, while
when the texture cache is in miss state, 4bit mode texture is faster than 8bit, which is faster than 16bit.

Access Rules
Primitive rendering speed can be calculated from the frame buffer access cycle.
Once all the primitives have been rendered to the frame buffer, they are displayed. Rendering performance
is related to the frequency of read-write access to the frame buffer.

Basic Rules

A write access to the frame buffer corresponds directly to a rendering operation. Read accesses to the
frame buffer take place when a texture pattern is being read and when in semi-transparent mode. The rules
for access cycles are as follows.

Table 8-14: Access Cycles

Access direction pixels/cycle Notes

Write 2 SPRT,TILE,POLY_F3,POLY_F4
1 Other

Read 1 Texture mapping

semi-transparent rendering

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-29

For example, the number of cycles required to render a 100x100 POLY_G4 and a 100x100 POLY_F4 are
shown below.

Table 8-15: Number of Access Cycles

Primitive type POLY_G4 POLY_F4

Total number of pixels 100x100=10000 100x100=10000
Total number of reads 0 0

Total number of writes 10000 5000

Total cycles 10000 5000

Texture mapping

Calculating the rendering speed of texture maps is extremely complex. However, we can first consider a
simple texture miss/hit, where the mapping is 1:1. In the 4-bit texture pattern, four texels (texture pixels) are
packed into one 16-bit word. Therefore, four texels can be read together with one access. Similarly, with an
8-bit texture pattern, two texels are read simultaneously.

In the case of a 100x100 POLY_FT4:

Table 8-16: Number of Cycles in POLY_FT4

Mode 4-bit 8-bit 16-bit
Total number of reads 10000/4=2500 10000/2=5000 10000
Total number of writes 10000 10000 10000
Total 12500 15000 20000

In the case of a 100x100 SPRT:

Table 8-17: Number of Cycles in SPRT

Mode 4-pit 8-bit 16-bit
Total number of reads 10000/4=2500 10000/2=5000 10000
Total number of writes 5000 5000 5000

Total 7500 10000 15000

It can be seen from this presentation that 4-bit textures are the fastest.

Texture Enlargement Ratio Dependencies

In these examples, 1:1 texture mapping was performed. However, the calculations differ if the texture is
enlarged or reduced. Below, the primitives from the previous examples are reduced horizontally by 2

(4-bit mode).

Table 8-18: Number of Cycles Used when Reduction Is Involved
ltem Cycles
Total number of reads 100x100/4=2500
Total number of writes 50x100=5000
Total 7500

Note that simply halving the area will not halve the rendering time.

Rendering speed improves when a texture is expanded, because the same texels can be used multiple
times, and fewer texture reads are needed to render an area.

CONFIDENTIAL Run-Time Library Overview

8-30 Basic Graphics Library

Texture Cache Dependencies

In the above examples, the texture cache is always missed. However, a texture for which there is a cache
hit can be used directly without a read operation. Calculating using the previous example:

Table 8-19: Texture Cache Dependencies
In the case of a 100x100 SPRT

Mode 4-bit 8-bit 16-bit
Cache hit 5000 5000 5000
Cache miss 7500 10000 15000

Note that if the texture pattern is in cache, rendering speed is constant regardless of the mode.

Clipping

The number of rendering cycles also depends on how polygons are clipped. Rendered polygons are
clipped within the rendering area. During clipping, the left and upper portions of the polygon generate
empty cycles.

Figure 8-12: Clipping

Drawing range

B

Drawing polygon

In this example, empty cycles are generated at A but are not generated at B. Empty cycles also include
empty texture read cycles.

Structure of the Texture Cache

This section describes the texture cache for the benefit of programmers who are concerned with optimizing
its use.

Cache blocks

A texture page is divided into rectangular regions based on cache size. Each of these regions is referred to
as a cache block. Cache blocks are numbered in sequence (according to block number).

In 4-bit mode, the size of the cache is 64x64. The texture page is divided into 16 cache blocks as shown
below.

Run-Time Library Overview CONFIDENTIAL

Figure 8-13: Cache Blocks in Texture Page

0

64

128

192

255

Cache entries

64 128 192 255
0 1 2 3

4 5 6 7

8 9 10 11
12 13 14 15

Basic Graphics Library 8-31

Each cache block can be divided further into 16 x 1 regions known as cache entries. In 4-bit mode, there

are 256 cache entries and they are arranged as shown below.

Figure 8-14: Cache Entries

61
62
63

0 16 32 48 63
0 1 p)
4 5 6
244 245 246 247
248 249 250 251
252 253 254 255

Each entry is structured as follows:

struct {
u_char
u_short

} Entry[256];

bl ock_i d;
data[4] ;

/*bl ock nunber tag*/
[*texture pattern data*/

Since cache data consists of 4 short words, a 4-bit texture would store 16 texture pixels in a single entry.

Cache strategies

A block number is saved in each entry, and this is used to determine when there is a hit or miss in the
cache. In texture mapping, the determination of whether texture pixel (u,v) is in cache or not is performed in
the following manner.

The block number to which a texture pixel (u,v) belongs can be calculated as:

block id =

And, the entry number associated with (u,v) can be calculated as:

(v>>6)<<2 + (u>>6)

entry_id = (v&x3f)<<2 + (u&0x3f)>>4

CONFIDENTIAL

Run-Time Library Overview

8-32 Basic Graphics Library

Based on these calculations, a cache hit evaluation can be performed with the following code:

is_cache_hit_4bit(u_char u, u_char v)

{
int block_id = (v>>6)<<2 + (u>>6);
int entry_id = (v&x3f)<<2 + (u&0x3f)>>4;
if (Entry[entry_id].block_id == bl ock_id)
return(l); /*cache hit*/
el se
return(0); [*cache mi ss*/
}

Since cache block numbers are saved independently in each cache entry, texture pixels having different
block numbers can coexist in the cache as long as their entry numbers are different. For example, since the
texture pixels in the rectangular area defined by

(u,v) = (0,0)-(63, 63)
all belong to the same texture block, they will be saved in the cache together. The texture pixels in the
rectangular region defined by

(u,v) = (16, 16)-(79, 79)
span multiple texture blocks, but they will also be saved in the cache together since there are no
overlapping entries. However, the texture pixels in the rectangular region defined by

(u,v) = (8,8)-(71,71)

have some overlapping entry numbers (e.g. (u,v) = (8,8)-(15,8) and (u,v) = (64,8)-(71,8)). Therefore, these
pixels will not be saved in the cache together even though the rectangular area itself fits in a 64x64 area.

Also, pixels that are not in contiguous regions and do not have overlapping entries, such as

(u,v) = (0, 0)-(15,15)
(u,v) = (80, 64)-(95,79)

can be saved in the cache together.

Mode dependencies

The sizes of the cache blocks and cache entries vary according to mode. However, the number of entries
is always 256.

Table 8-20: Size of Cache Blocks and Cache Entries

Mode Block Number of blocks Entry Number of entries
4 64x64 16 16x1 256
8 64x32 32 8x1 256
16 32x32 64 4x1 256

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-33

Primitive Division

Problems can arise when drawing an area that occupies a large space in the display screen with a single
texture primitive.

Texture Mapping Distortion

PlayStation uses affine transformation for texture mapping. When mapping a large primitive, the image can
become distorted due to conversion errors. The texture coordinates (u ,v) attached to the points within the
polygon (X, y) are calculated as:

u
\'%

a0*x + al*y + a2
bO*x + bl*y + b2

This does not produce a correct image. On the other hand, the following equations contain correct
perspective conversion;

u
\'

(a0*x + al*y + a2*z + a3) / (cO0*x + cl*y + c2*z +c3)
(b0*x + bl*y + b2*z + b3) / (cO*x + cl*y + c2*z +c3)

If the z depth within the polygon is fixed or changes are few, a correct mapping image can be created.

As a result, when a quadrilateral primitive which occupies a comparatively large area of ground and has
large depth changes is drawn, a mapping image with a bent diagonal line will result due to conversion
errors.

Texture Cache Mistakes

Texture mapping a large primitive cannot get any value from using the texture cache. In 4-bit mode, one
texture cache entry is maintained horizontally 16 texels (4 short words). When the necessary texels are not
in the cache, GPU combines the cache entries containing those texels and speculatively reads them. If the
surplus 15 texels which are read additionally are used before the entry is flashedflushed, this contributes to
the drawing efficiency, but if they are not used, they are discarded as useless.

However, in 4-bit mode the texture cache size is restricted to a 64x64 size. This means that texels
separated by 64 texels share the same cache entry. Therefore, when drawing something which has a
maximum displacement (du, dv) of the (u,v) within the primitive greater than 64, cache mistakes will occur
without fail during drawing.

In the worst case (when the mapping of the u,v direction and x,y direction are exactly 90 degrees) the
cache entry texel read speculatively is flashed before it is used next and then becomes useless. In such a
situation, the drawing speed is reduced by half.

The difficult point in this problem is that the drawing speed can fluctuate greatly depending on the primitive
drawing direction. The drawing direction fluctuates dynamically with the local screen matrix value and the
matrix value is moved by the controller input. Undecided elements such as this which cause major
fluctuations in the drawing efficiency can make the program more difficult.

Clip Overhead

Drawing a large primitive is disadvantageous from a clipping standpoint. If the entire primitive is outside the
drawing area, that primitive is not drawn (that is, not recorded to the OT). However, if even one section falls
within the drawing area, that section must be recorded to the OT. Although drawing outside the drawing
area can be cancelled by the GPU clipping function, an empty cycle can sometimes be produced. As the
primitive increases in size, the chance that its entire area will all be outside the drawing area decreases and
the chance that an empty cycle will be produced increases.

CONFIDENTIAL Run-Time Library Overview

8-34 Basic Graphics Library

Primitive Division

Almost all of these problems can be solved by dividing a large primitive in advance. For a primitive which
has an area which has the possibility of becoming large, the area and distance from viewpoint before

perspective conversion are evaluated during drawing and the decided frequency is recursively divided at
the mid-point. Depending on the objective, there are several division algorithms and packaging methods.

Following is a simple POLY_FT4 recurrent division example:
typedef struct {

short X, Y, 2z

u_char u, v

short X2, y2
} VERTEX

/*Macro for perform ng md-point division*/
#define half (vO0, v1, v2) /

(v0)->x3 = ((Vv1)->x3+(v2)->x3)>>1, /
(v0)->y3 = ((v1)->y3+(v2)->y3)>>1, /
(v0)->z3 = ((v1)->z3+(v2)->z3)>>1, /
(v0)->u = ((vl)->u+(v2)->v)>>1, /
(v0)->v = ((vl)->u+(v2)->v)>>1, [/

get _Rot TransPers (&((vO0)->x3),

extern POLY_FT4 *heap
extern PCLY_FT4 *sle;tpm
extern int mn_x, max_y;
extern int max_x, max_y;

[*Tenpl at e*/
[*Drawi ng area*/

&((v0)->x2, &dny,

&dny,

&dny) ;

[*Buffer which saves primtive after division*/

voi d divideFT4 (int ndiv, VERTEX *v0, VERTEX *v1, VERTEX *v2, VERTEX *v3)
{
if (mn4(v0-> x, v1->Xx, v2->X, v3->X) > max_X) return;
if (mn4(v0-> x, v1->x, v2->X, v3->X) > min_x) return;
if (mn4(v0-> x, v1l->x, v2->x, v3->X) > max_y) return;
if (mn4(v0-> x, vl->x, v2->x, v3->X) > mny) return;
if (ndiv)
{
u_long d;
VERTEX v4, v5, v6, v7, v8
hal f (&4, vO, vl);
hal f (&5, Vv2, Vv3);
hal f (&6, VO, Vv2);
hal f (&7, vl1, v3);
hal f (&8, &5, &v6);
di vi deFT4(ndiv-1, vO, &4, &6, &v8);
di vi deFT4(ndi v-1, &v4, v1, &8, &7);
di vi deFT4(ndi v-1, &v6, &8, V2, &b5);
di vi deFT4(ndiv-1, &8, &7, &5, v3);
return;
}
el se
{
*heap = *skelton;
set XY4 (heap, vO->x, vO0->y, vl1->x, vl->y,
V2->X, V2->y, V2->X, V2->Y);
set W4(heap, vO0->u, vO0->v, vi1->u, vi->v;
V2->Uu, V2->v, V2->u, V2->V);
heap++;
}
}

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-35

Perspective conversion is carried out correctly on the new vertex produced by the division (division vertex).
With this method correct conversion is performed only on the division vertex and can be thought of as
being interpolated via the primary method. Therefore, when the number of divisions increases (if the
number of division vertices increases), the approximate precision increases and the quality of the texture
images also increases.

Division also has an effect on the texture cache. The (du, dv) of the primitive after conversion are smaller
than those before division. When division is repeated and the (du, dv) stay within the size of the texture
cache, the drawing efficiency is greatly increased.

Division is also effective for clipping. By dividing a large primitive the probability that the entire primitive area
will fall outside the drawing area increases. As a result, it is possible to reduce the useless empty cycles
outside the drawing area.

Debug Environment

Debug Mode

When debug mode is set, each function checks the conformity of the data as far as possible. If there is any
problem, it will print a return code and the contents as a debug string.

Debug String

When debug mode is set by the SetGraphDebug() function, or the contents of a structure is output by
using the Dump...() function, the output character string is stored in the specified character string buffer.
The Fnt...() function is used to display this on screen.

High-Level Library Interface

Libgpu is designed to avoid dependence on any particular data structure and paradigm. It contains no
functions that can work directly with PlayStation graphics formats such as TIM (a two-dimensional image
related data structure) or TMD (a three-dimensional object data structure). To handle these formats directly,
you can use functions of the extended graphics library (libgs).

However, the OpenTMD()/ReadTMD() and OpenTIM()/ReadTIM() functions are available to analyze the
contents of TMD data and TIM data only for the debugging of the data itself. There is also an interface
between libgpu and libgs.

ReadTIM()interprets as much as possible the header information within TIM format image data of TIM data.

ReadTMD()interprets as much as possible the information of any polygon data inside any object with TMD
data.

CONFIDENTIAL Run-Time Library Overview

8-36 Basic Graphics Library

Cautionary Programming Notes

This section discusses some topics that you should be aware of when using libgpu.
* Texture polygon coordinate specification

* Handling PAL format

» Timing for updating the frame buffer

* VSync synchronization in interlace mode

Texture Polygon Coordinate Specification
The following problems have been reported when drawing textured polygons:

1. When attempting to display a 16x16 texture map on a 16x16 polygon, using the parameters (0, 0) to
(15, 0) and (0, 15) to (15, 15) causes the lines at the bottom and right edges not to be displayed.

2. With the textured polygon POLY_FT4, enlarging the texture before displaying the polygon causes an
extra dot to be displayed on the right and bottom edges.

(x,y)=(0,0)—(16,16), (u,v)=(0,0)—(16, 16) Nor nal
(x,y)=(0,0)—(17,17), (u,v)=(0,0)—(16, 16) Nor nal
(x,y)=(0,0)—(31,31), (u,v)=(0,0)—(16, 16) Nor nal
(x,y)=(0,0)-(32,32), (u,v)=(0,0)—(16, 16) Extra dot displ ayed

3. With the textured polygon POLY_FT4, texture patterns cannot be specified if they touch the right or
bottom sides of the texture page.

These problems relate to the following drawing rules.

Drawing Rules

The drawing rules for PlayStation POLY_... primitives specify that drawing cannot be performed along the
right and bottom edges. This rule prevents the polygon boundary lines from being written twice when
polygons are used to cover an area.

An example of this is shown in the following diagram. As can be seen, without this rule, the center
intersecting lines of polygons PO, P1, P2, and P3 would be written twice. This might be a problem in some
cases, such as when using semi-transparent mode.

Figure 8-15: Drawing Rule

PO P1

P2 P4

The above example assumes that a square specified by the coordinates (x, y) = (0, 0) to (8, 8) and
(u, v) = (0, 0) to (8, 8) is being drawn as POLY_FT4. In other words, the following is assumed.

POLY FT4 ft4;

Set XY4(&t4, 0,0, 8,0, 0,8, 8,8);
SetUv4(&t4, 0,0, 8,0, 0,8, 8,8);

) 1

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-37

The texture pattern for the above is mapped as shown below.

The numbers in the map represent the texture pattern values (v, u) that are copied to the corresponding
pixels. These values are entered in the order of (v, u), not (u, v), in accordance with frame buffer addressing.

Figure 8-16: Mapping

0 1 2 3 4 5 6 7 8

0]100] 01] 02] 0304 |105]106]07] 08

1110 11] 12] 13|14 |15 |16]17] 18

22021 22| 23[24 [25 [26 | 27| 28

8180| 81| 82|83 [84 [85 |86 | 87| 88| The (u.v) values at
this point are (8,8).

If the drawing rule described earlier is applied under this condition, the lines at the right and bottom edges
are not displayed, so the actual display is as shown below.

Figure 8-17: Displayed contents

In the example above, texture mapping at (0, 0) to (7, 7) is accurate from pixels (0, 0) to (7, 7).

Next, if (u, v) = (0, 0) to (7, 7), the mapping is as shown below.

CONFIDENTIAL Run-Time Library Overview

8-38 Basic Graphics Library

Figure 8-18: Mapping

0O 1 2 383 4 5 6 717 8
0]100] 00f O1] 02[03 |04 |05 06] O7
1]100]00f01] 02[03 |04 |05 06| O7

8|70 70| 71| 72|73 |74 |75 | 76| 77 |e— The (u,v) values at
this point are (7,7).

Applying the drawing rule described above, the lines at the right and bottom edges are deleted, so that the
lines represented by texture values u =7 and v =7, i.e., the lines at the right and bottom edges, are not

displayed.
Figure 8-19: Displayed Contents

0 1 2 34 5 6 7

0[00] 00| O1] 02|03 |04 |05 |06

1100]00| O1] 02|03 |04 |05 |06

As shown above, correct results will be obtained if (x, y) = (0, 0) to (8, 8) and (u, v) = (0, 0) to (8, 8) are used.

In ordinary texture mapping, no problems should occur when the mapping is contiguous, i.e., when
adjacent polygons have adjacent texture patterns applied to them.

However, in background displays, adjacent cells (POLY_FT4 cells) are not required to use adjacent textures
by necessity.

In this case, using the normal specification described above would cause the following types of problems
to occur.

Inverting or Rotating Textures
For example, suppose you want to rotate the texture described above 180 degrees in the XY direction and
then display the rotated texture. Without changing the (u, v) values for POLY_FT4, you can specify the
following for (X, y).

Set Xy4(&ft4, 8,0, 0,0, 8,8, 0,8);
The texture pattern for the above is mapped as shown below.
The numbers in the map represent the texture pattern values (u, v) that are copied to the corresponding
pixels.

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-39

Figure 8-20: Mapping

O 1 2 3 4 5 6 7 8
0]108] O7] 06] 0504 103]102] 01] 00
11181 17] 16] 15|14 113 |12]11] 10

2 (28] 27| 26| 25[24 [23 [22 [21 20

8188| 87| 86| 85 8483 |82|81| 80|le— The (u,v) values at
this point are (0,8).

Applying the drawing rule described earlier, the lines at the right and bottom edges are not displayed, and
S0, as shown below, the line defined as (u, v) = (0, 0) to (O, 7) (the points at each pair of UV spatial
coordinates from (0, 0) to (7, 0)) are not mapped. Instead, the points from (8, 0) to (8, 7) are shown as the
left edge, meaning that the entire image is shifted one dot to the left when it is mapped.

Figure 8-21: Displayed Contents

0O 1 2 3 4 5 6 7

Here (u,v)=(1,0) is
1_
0 (08| 07| 06 05(04 [03 [02 [Of mapped instead of the

1[18] 17| 16| 1514 |13 |12 | 11| expected (uv) = (0.0).

2128 27] 26| 25|24 123 122 | 21

This effect may occur when the texture pattern is inverted vertically or when the polygon is rotated 90 or
more degrees.

In particular, when the polygon is rotated, the mapped texture pixels change depending on the angle of
rotation.

Enlarging Textures
Let us consider an example in which the same POLY_FT4 as above is enlarged to twice its size.

In this case, specifying (x, y) = (0, 0) to (16, 16) and (u, v) = (0, Q) to (8, 8) causes the texture pattern to be
mapped as shown below (values are rounded to the nearest whole number).

CONFIDENTIAL Run-Time Library Overview

8-40 Basic Graphics Library

Figure 8-22: Mapping

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

00

01

01

02

02

03

03

04

04

05

08

04

06

07

07

08

08

00

01

01

02

02

03

03

04

04

05

05

06

06

07

07

08

08

10

11

11

12

12

13

13

14

14

15

15

14

16

17

17

18

18

10

11

11

12

12

13

13

14

14

15

15

146

16

17

17

18

18

14

70

71

71

72

72

73

73

79

76

a4

a4

78

78

15

80

81

81

82

82

83

83

85

86

86

87

87

88

88

16

80

81

81

82

82

83

83

85

86

86

87

87

88

88

Applying the same drawing rule, the lines at the right and bottom edges are not displayed, so (u, v) is
displayed in the range (0, 0) to (8, 8) as shown below.

Figure 8-23: Displayed Contents

0

1

2

3

4

5

6

7

8 9

10

11

1213

14

15

00

01

01

02

02

03

04

04

05

05

09

04

07

07

08

00

01

01

02

02

03

04

04

05

05

06

04

07

07

08

10

11

11

12

12

13

14

14

15

15

16

19

17

17

18

10

11

11

12

12

13

14

14

15

15

16

16

17

17

18

14

70

71

71

72

72

73

73

75

76

76

77

77

78

15

80

81

81

82

82

83

83

85

86

86

87

87

88

I

The “u=8" point remains here

When the mapping is gradually increased from the same scaling factor, this effect occurs precisely when
the scaling factor becomes 2.

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-41

Specifying Pixels on the Left and Bottom Edges of the Texture Page

For the same reason as explained above, it is not possible to display the lines at the texture pattern right
and bottom edges (the lines specified as u = 255 and v = 255, respectively).
In the example used earlier, you must specify the following to display the 8 x 8 section at the right bottom
edge of the texture page.

Set UV4A(&ft4, 248,248, 256,248 256, 256, 248, 256);
But because the resolution of (u, v) is 8 bits, you cannot set a value of 256, because it will overflow to a
value of zero. Therefore, these values must be rounded down to 255 as shown below.

Set UV4A(&ft4, 248,248, 255,248 255,255, 248, 255);

Note that the line defined by u = 255 and v = 255 is not displayed. This problem occurs when polygons are
enlarged by a factor of two or more.

Similarly, this problem occurs at the leftmost line (the line at u = Q) if the texture is mapped as horizontally
flipped. If the texture is mapped as both horizontally and vertically flipped, this problem occurs at the top
and leftmost lines (the lines at v = 0 and u = 0). In other words, neither of these lines is displayed.

Corrective Measures

Subtracting a 1 from the (u, v) values will avoid all of the problems described above, although other
problems may occur. This will, however, prevent the right and bottom edges of the texture pattern from
being displayed. In other words, if the texture pattern is a 16 x 16 pattern, it will be enlarged to 16:15, and if
it is an 8 x 8 pattern, it will be enlarged to 8:7 when displayed. Be sure to note this when creating Sprite
patterns.

Handling PAL Format

The information in this chapter assumes an NTSC display. A number of changes are necessary in order to
output a signal for PAL-format TV receivers.

Differences between NTSC and PAL
The major differences between NTSC and PAL are shown in the following table:

Table 8-21: Differences between NTSC and PAL

Video format NTSC PAL
Field rate 60HZz 50Hz
Standard vertical resolution 240 256

Since the PAL field rate is 50Hz, the maximum display rate is 50 frames/second. Also, since vertical sync
interrupts only occur 50 times a second, programs that use Vsync for timing will appear to slow down to
5/6 of the NTSC rate.

The vertical resolution that can be displayed on a standard TV is greater for the PAL format. Thus, a larger
display area within the frame buffer is needed for full-screen displays on a PAL-format TV. If the NTSC-
format display area is used on a PAL TV, an upper or lower section of the screen will appear dark.

CONFIDENTIAL Run-Time Library Overview

8-42 Basic Graphics Library

Changes to handle PAL format
Programs designed with the NTSC format in mind must be changed in the following ways to handle PAL-
format monitors.
» Enable PAL mode using the SetVideoMode() function
* Adjust the display starting position
* Adjust timing
* Adjust display area

Of these, changes in the first two are required. Changes in the last two are optional depending on the
application.

Enabling PAL mode

For the DTL-H2000, PAL mode can be enabled by setting the DIP switch on the main unit and then using
the SetDispMode() function.

#i ncl ude <libetc. h>
mai n()

{
Set Vi deoMbde(MODE_PAL) ;

Programs operating in this mode will run on PAL PlayStations as well.

Adjusting the display starting position

With PAL format, although the vertical resolution prerequisite is 256 lines, the vertical resolution of the
display is 240 lines in the standard setting. Thus, without any changes, the display area on a PAL TV wiill
appear as if it were shifted to the top of the screen. However, the display area should be centered on the
screen by modifying the default values of the screen structure in DISPENV.

Figure 8-24: Display Starting Position

0 255 0 255
0 0
16
Display area [Display area
256 279
288 288
DI SPENV di sp;
di sp. screen. x = 0; /[*same as NTSC+/
di sp. screen.y = 16; [*(288-256)/2*/
di sp. screen.w = 256; [*same as NTSC+/
di sp. screen. h = 256; [*256*/

Put Di spEnv(&di sp) ;

Adjusting timing

In PAL mode, VSync interrupts are generated only 50 times a second. Many programs use the vertical sync
interrupt (VSync()) to handle timing, so in these cases timing should be adjusted by 6/5.

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-43

Timing for Updating the Frame Buffer

The PlayStation can update the display area in the frame buffer (in operations such as swapping double
buffers) at a rate different from the video frame rate (1/60 sec). However, if the display is updated at an
irregular rate (that is, not a multiple of 1/60 second), flicker may result on the screen, which may be
perceived by users as a bug in the application.

If the time spent in calculation and rendering operations exceeds the frame rate, motion on the screen may
appear delayed for a moment. This is referred to as a skipped frame and is generally tolerated, but it may
still be interpreted by some users as a defect.

The following points relate to managing frame rates when developing an application.

Timing for updating double-buffer switching
Switching double buffers is generally synchronized with the vertical sync.
In (A), buffer-switching depends on either rendering or displaying, whichever is slower. Thus, switching will
become out of sync with vertical retrace and will take place during the display period. Therefore, unless a

special effect is being performed intentionally, a VSync(0) should be executed when the buffers are
switched so that synchronization is maintained.

(A (B)

while (1) { while (1) {
ﬁé\-NSync(O); b.r;’;u./\/&/nc(O);

VSync(0);
swap_buffer(); swap_buffer();
Dr awOTag(ot) ; Dr awOTag(ot) ;
} }

Keeping the frame rate constant

If the time required to create a frame is sometimes slightly less than 1/60 second and sometimes slightly
more, the application’s frame rate will jitter between 60fps and 30fps. This can cause objects on the screen
to move in an unnatural manner, leading to complaints from users.

The same thing applies for other frame rates (such as 20, 15, etc.) whenever the time period for creating a
frame is close to a 1/60 second boundary. (Or a 1/50 second boundary for PAL video systems.)

In these cases, the frame rate can be fixed (at the slower rate) by using the VSync counter to determine
when to change buffers. The following example fixes the frame rate at 30 fps by calling VSync(2), which
waits for the second vertical blank after the last VSync call:

while (1)

{
Dr awSync(0);

/*Wait for 2nd vertical blank after |ast VSync call*/
VSync(2);

swap_buffer();

S /*build next frane*/

Dr awOTag(ot) ; [*draw next frame*/
}

You can fix the frame rate at 20 frames/sec by using VSync(3) and at 15 frames/sec by using VSync(4).

Using absolute time

Sometimes it’s not desirable to synchronize an application to the slowest frame rate, especially if frame
rates drop only at specific and relatively rare instances. Also, forcing buffer switching to stay in sync with
the fixed vertical sync generates idle periods where the CPU and GPU perform no real operations.

CONFIDENTIAL Run-Time Library Overview

8-44 Basic Graphics Library

If the frame rate varies, the internal clock of an application should not be based on the frame rate, because
the speed of an object on screen will vary depending on the frame rate. Instead, you can use an absolute
counter such as VSync(-1) or RCnt3 for such calculations.

(A (B)

while (1) { while (1) {
Dr awSync(0) ; Dr awSync(0) ;
VSync(0); VSync(0);
swap_buffer(); swap_buffer();
frame++; frame = VSync(-1);
Dr awOTag(ot) ; Dr awOTag(ot) ;

} }

In these examples, frame is used to increment stages of motion or animation. The code in (A) will result in a
movement slowdown when the frame rate drops, and a speedup when the frame rate increases. To avoid
this, you can calculate frame as shown in (B). In this case, the overall motion will not be delayed or speeded
up, even if frames are occasionally skipped due to overflow in calculation or rendering.

If the displacement or scrolling of an object is based on an absolute counter, there is no need to keep a
fixed frame rate. Therefore, this approach can be considered a more thorough solution than forcing a fixed
frame rate. However, there is an increased load on the program if updates are consistently made
independently from double-buffer switching. Therefore, the choice of method should be determined based
on the application’s objectives.

Cancelling rendering operations
In interlaced mode, both calculation and rendering operations must be completed within 1/60 second.
Therefore, when switching buffers, the vertical sync (VSync) must have a higher priority than drawing
completion (DrawSync)

Therefore, rendering must be reset midway to synchronize with VSync(0). In general, rendering time varies
more than calculation time so predicting rendering time is difficult. If a large figure is to be drawn and there
is an overflow in rendering time, rendering can be reset midway so that screen flicker from interlace mode
can be avoided.

(A (B)

while (1) { while (1) {
Dr awSync(0) ; VSync(0);
VSync(0); Reset Graph(1);
swap_buffer(); swap_buffer();
Dr awOTag(ot) ; Dr awOTag(ot) ;
} }

In particular, performing Movelmage() on rectangles that are 16 dots wide or less and rendering of polygons
that are narrow in width generate frequent page breaks and tend to have varying processing times. If these
kinds of operations are to be performed often in interlace mode, buffer switching should not be dependent

on rendering speed.

Return value from VSync(1)
If you call VSync(1), the return value is the time elapsed since the last VSync(0) or VSync(n) call, in horizontal
sync units.
VSync(0); /*wait for V-BLNK*/
t = VSync(1); /*value of Hfromlast VSync(0)*/

In this code, you’d expect t to be close to 0. However, this may not be the case, because functions such
as sound callbacks and controller drivers are executed by the system during the vertical blank period.

Run-Time Library Overview CONFIDENTIAL

Basic Graphics Library 8-45

VSync Synchronization in Interlace Mode

A problem arises when using the interlace single buffer (vertical 480 dot) mode. When switching the
drawing in VSyncCallback() rather than VSync(), only the even fields of the first primitive rendering recorded
to the OT are cached. As a result, the background may not be able to be cleared and an afterimage may
remain.

Cause

In interlace mode, the even and odd fields are alternatively displayed at 1/60 second intervals. In other
words, if the mode is 640x480, y displays the even line and the odd line alternatively. At such times, the
GPU performs the following operations depending on whether even or odd is being displayed:

* When displaying an odd field, only the even line is rendered.
* When displaying an even field, only the odd line is rendered.

Though it is a single buffer, it becomes a mechanism whereby the screen being rendered is not displayed.

Therefore, the GPU must know whether the current video output is an odd field or an even field. However,
during the vertical blank, the GPU always recognizes it as an even field.

Figure 8-25: Switching between even and odd fields

Video even V-BLNK odd V-BLNK even V-BLNK

GPU even even* odd even even*

Note: even* refers to the fact that the GPU recognizes the current field as even when it should be odd.

Vsync is called at the V-BLNK start point (not the end point). Therefore, the items rendered during V-BLNK
are only rendered in an even field. In Z-sorting, the section which is normally rendered first becomes the
background section. As a result, the background of only half a field is not cleared, BG rendering is not
performed, and other such problems arise.

Countermeasures

To avoid this, rendering must be started immediately after the vertical blank has terminated. Since
VSyncCallback() cannot detect V-BLNK termination, you can use the following options:

* Add a callback using H-Sync callback (RCnt2)

* Increase the frequency of H-Sync during V-BLNK using VSync(1) is needed. However, a function
GetODE() is being introduced as a more reliable method for distinguishing whether the current field is
even or odd.

u_long Get ODE(void); / *0...EVEN 1...0DD */

GetODE() is formally introduced in Library Ver. 3.7. When using prior libraries, incorporate the above-
mentioned declaration into libgpu.h, etc.

Please note that the GetODE() value does not indicate the even or odd field of the current video output, but
rather the value of the even or odd field recognized by the GPU. Since GetODE() returns only even frames
during a V-BLNK immediately after a VSyncCallback(), an expedient is required. Refer to the sample
program for details.

CONFIDENTIAL Run-Time Library Overview

8-46 Basic Graphics Library

Supplement

In interlace mode, the odd and even fields are forcibly switched to 1/60[sec] with NTSC standards.
Therefore, when in this mode, all processes must be completed at 1/60[sec]. When rendering time is the
cause of processing mistakes (GPU trouble), these can be avoided by cancelling rendering (ResetGraph(1)),
although of course a partial polygon will be produced. If the CPU is the cause (CPU trouble), screen
disturbance can be avoided by using the previous OT until the CPU generates the next OT to perform re-
rendering.

A rendering command (Draw0Tag) must be issued within the VSyncCallback() in order to implement this.

GPU timeout message

The following message may appear during program execution, and processing will stop:

GPU tineout:que=...,stat=...,chcr=...,madr=...

This GPU timeout is issued in cases where four seconds (240VSync) have elapsed, but the GPU non-
blocking function has not yet terminated. An incorrect primitive link may be the cause.

For example, rendering will never terminate when primitives are listed in a loop, as below:
pO->pl->p2->p3....->p2
In this situation, a GPU timeout will be issued. The meaning of each value is as follows:
GPU timeout:que=%d,stat=%08x,chcr=%08x,madr=%08x
e que:; Command queue remainder (O when idle)
» stat: Only bit 26 has meaning
1: Rendering in progress
0: idle
» chcer: Only bit 24 has meaning
1: Executing in the background
0: idle
e madr: Address where DrawOTag() / Loadlmage(), etc. are being executed

Run-Time Library Overview CONFIDENTIAL

Chapter 9:
Basic Geometry Library

Table of Contents

Overview
Library and Header Files

Theoretical Geometry Operations Using the Basic Geometry Library
Coordinate Calculation
Light Source Calculation
Normal Line Vector, Light Source Vector Direction
GPU Code
Normal Line Clipping
Normal Line Clipping Function

Depth Cueing
Implementation of Depth Cueing (Common Operations)
Depth Cueing Using Vertex Colors
Depth Cueing Using Textures

Material Light Source Calculation with Material Quality
Functions with Three or Four Vertices

libgte Argument Format
Recommended Format

Libgte Function Flag Variables
About libgte Mesh Functions
Changing Screen Offsets

PMD Functions
PRIMITIVE Group
TYPE Packet Data Configurations
VERTEX

SMD, RMD Functions

Polygon Division

CONFIDENTIAL

9-3
9-3

9-3

9-5

9-8

9-8

9-8

9-9
9-10
9-10
9-11
9-11
9-13
9-14
9-14
9-15
9-15
9-17
9-17
9-17
9-17
9-18
9-20
9-20
9-21

Run-Time Library Overview

9-2 Basic Geometry Library

Run-Time Library Overview CONFIDENTIAL

Basic Geometry Library 9-3

Overview

On the PlayStation, polygons are not drawn directly after calculation. Instead, the polygons on a given
screen are sorted before drawing takes place:

Geometry arithmetic --> sorting --> drawing

Library and Header Files
Programs using the basic geometry library must link with the file | i bgt e. |'i b.

Source code must include the header file | i bgt e. h.

Theoretical Geometry Operations Using the Basic Geometry Library

When you use the functions provided by the basic geometry library, the GTE is activated to perform high-
speed calculations. It performs two primary types of calculation:

Coordinate calculation, which takes the three-dimensional coordinates of polygon vertices and generates
two-dimensional coordinates on the screen. These calculations can involve coordinate and/or perspective
conversions.

Light source calculation, which finds the lighting of a polygon on the screen from the direction, color and
intensity of a light source and the position of the polygon.

Coordinate Calculation

The basic geometry library assumes three types of fixed coordinate systems on the screen:

e Local coordinate system: the fixed coordinate system of the object.
« World coordinate system: the fixed coordinates of the world in which the object is placed.
* Screen coordinate system: the fixed coordinates of the screen.

An “object” consists of multiple polygons, and multiple objects compose one screen. Therefore, it is
possible to have multiple local coordinate systems.

Normally, vertex data for each polygon are specified in the local coordinate system. To convert these into
screen coordinates, the following conversions are necessary:

CONFIDENTIAL Run-Time Library Overview

9-4 Basic Geometry Library

Localcoordinatesystem H[EN Worldcoordinatesystem
(Vx, Vy, Vz) (Wx, Wy, Wz)
World coordinatesystem (BN Screencoordinatesystem
(Wx, Wy, Wz) (Sx,8y,8x)
Wx[VxO WLxO

el g

Bvzg Bz0 pvizg

Bx WxO BwxO

o sl pwvp

Bpz8 Ewvzg Bpwzg

[WLij] is the world/local conversion matrix

[WLx, WLy, WLZ] is the world/local translating vector
[SWi]] is the screen/world conversion matrix

[SWx, SWy, SWz] are the screen/world translating vectors

Synthesizing this results in the following:

X0 S/\/LX %WXB
o %W@N s
E‘BzD

HzH Hviz BSWZE

Lx% E’L:PWX
Ly% %Wy

X

0 0

O O H

U= sswijeryLiiry O+ %W"
Yo % IJ%N I E ij
O O

0 0

74

) i) g

The synthesized coordinate conversion matrices between coordinate systems and translating vectors are
called:

Rotationmatrix (RTM)
[Ril =[swi wi

Translating vector (TRV)
ORxO OWLxO [BwWxO

%’RyD= [swi] a/\/LyE+ %Wy%

gRzg Bvizg (w2

Run-Time Library Overview CONFIDENTIAL

Basic Geometry Library

The local coordinate values may be calculated with the rotation matrix by adding vectors to one matrix
multiplied by the screen coordinate.
Local coordinate system 0o Screen coordinate system

(Vx, Vy, Vz) (Sx, Sy, Sz)

BxOd /xO ORxO
=il e Grvg
bzg Bzg gRzQ

You can use SetRotMatrix() and SetTransMatrix() to set the constant rotation matrix and the constant
translating vector. They don’t need to be changed if the coordinate system and position don’t change.
However, when a different local coordinate system is used for each object, each needs to be set
separately.

Note: The local coordinate system setting method is up to the user.

You can use RotTrans() to find the screen coordinate value from the local coordinate system. Then
coordinate conversion can be performed by the previously-set rotation matrix and translating vector.

Using a screen coordinate value found with RotTrans(), a parallel projected image of the object may be
formed on the screen. In real vision, a distant object must be perspective-converted so that it appears
small.

Screen coordinate system Screen coordinate system
[Q HRERN/EN
(SX, Sy’ SZ) perspectiv e conversion (SSX, SSy)
Bsx O Bx O

sy Bz (vsz) SyH

h is the distance from the eye to the screen. Perspective conversion is done by multiplying the screen
coordinate X and Y components by h/Sz.

You can use RotTransPers() to perform RotTrans() and perspective conversion together.

Note: In practice the following offset value is added in RotTransPers():

5SxO 05xO [OFXO

sy IR e

Also, the depth cueing interpolation coefficient p is calculated at the same time.

Light Source Calculation

The GTE uses a parallel light source complete diffusion reflection model for light source calculations. It
doesn’t rely on the position of the point of view, but determines the lighting on the basis of light source
attributes and polygon attributes.

The following describes a light source calculation for one vertex of a polygon:
Each vertex of a polygon has two attributes:

* Normal line vector - (Nx, Ny, Nz)
» Vertex color - (R, G, B)

The normal line vector is usually given in the local coordinate system.

CONFIDENTIAL Run-Time Library Overview

9-5

9-6 Basic Geometry Library

The light source has three attributes:

Light source vector (direction and intensity) - (Lx, Ly, Lz)
Color of the light source - (Lr, Lg, Lb)
The ambient color - (BKr, BKg, BKb)

Since the light source is a parallel light source, there is no position information. Since it is the same for each
object, it is given in the world coordinate system. Other than the influence of the light source, the
background ambient color is present at all of the vertices.

The color (RR, GG, BB) in which the vertices are depicted on the screen is calculated as follows:

1.

Convert normal line vector coordinates into the world coordinate system.

Normal line vector (local) [Normal line vector (world)

MNWx [Nx O
o -]
NWz Nz 3

2. Calculate the “light source effect” by taking the inner product of the light source vector and the normal

Run-Time Library Overview

line vector (world).

Normal line vector (world) « Light source vector [Light source effect (L)

INWx [MNx [
L=lx By Befx oo wd] By E
ANWz § ANz 5

Note: . means dot product.

Multiply the light source effect by the light source color for each item to get the color effect of the light
source (local color) for vertices.

Light source effect (L) * Light source color (Lr,Lg,Lb) 0O Light source color effect (LI)

Lir O OrQO
og=L dor
filbg Hog

Add the light source color effects and the ambient colors to find the color effect of the whole
environment.

Light source color effect (LI) + Ambient color BK) O Color effect (LT)

OTrQd Or0d [BKrO

dTop= L fog+ ko
BTeg [@bE @BKbQg

Multiply the vertex color by the color effect to find the vertex color for display.

RR=R*LTr
GG=G*LTg
BB=B*LTb

CONFIDENTIAL

Basic Geometry Library

For example, if there were three light sources in the above procedure, (1) and (2) would respectively be
as follows:

010 Oxd Lyl L0 ONxO
%2%: Exz Ly2 LZZHWU]] %Llyg
ASH Ax3 Lyd Lz8F Nz

Here, if the product of multiplying

Ox1 Lyl Lzi0
2 Ly2 Lzzavvl_iﬂ
Ax3 Ly3 Lz8F

is [Lij], then(1) and (2) can result in the following one-off matrix calculation.

10 Nx[
-l o
38 Nz

This matrix [Lij] is called the Local Light Matrix (LLM) in GTE.

Therefore, there is no need to convert the normal line vector for each polygon into the world coordinate
system. It is sufficient to calculate just the local light matrix [Lij] for each object.

The local light matrix, like the rotation matrix, is a GTE constant matrix. The local light matrix [Lij] may
be set by SetLightMatrix().
Further, if there are three light sources, then there are three light source colors so that (3) above is as
follows:

Lird irQgd dorgd 3rd

O_ O O O
%Ig[l— L1 %1 o+ L2 %29D+ L3 %ng
uille]w f1bg fi2bg fi3b8

Oir L2r L3rOoiQd
_ 04 0
-%19 Log LSQD%ZD

Aib L2b L3bFA3H

If this matrix,
1r L2r L3rQd
a_ O
[LRu]—%Jg L2g L3g3
A1b L2b L3bf

is [LRij], then (3) and (4) above for 3 light sources will be as follows:

TrOd 010 [BKrO

%ngz [Lri] %2% %Kgg
fiTog fi3g Ko

This matrix, [LRIij] is called the Local Color Matrix (LCM) in GTE. The local color matrix and local light
matrix, like the rotation matrix, are GTE constant matrices. Each may be set by SetLightMatrix() and
SetColorMatrix().

Also, ambient color is called Back Color (BK) and may be designated by SetBackColor().

CONFIDENTIAL Run-Time Library Overview

9-7

9-8 Basic Geometry Library

The procedures (1) (2) (3) (4) and (5) explained above may be summarized as follows based on up to
three light sources.

6. Normal line vector (local) --> Light source effect (local light matrix)

010 O
4ep=ll o
{@3g Bz0

7. Light source effect --> Color effect (local color matrix, back color)

ATrd 010 BKrd
%ngz [LRi] %2% %Kgg
[T 38 Kb

8. Color effect, vertex color --> Vertex screen color

RR=R*LTr
GG=G*LTg
BB=B*LTb

There is a function in the basic geometry library
Nor mal Col or Col ()

which performs this 6), 7) and 8) once. In GTE light source effect is called local color (LC).

Normal Line Vector, Light Source Vector Direction

The normal line vector given to each vertex of a polygon should be placed in a direction from the front to
the back (pointing into the object). The light source vector is not the position of the light source, but should
be the direction of the rays.

GPU Code

The GTE has a register that maintains the GPU packet code. Light source calculation functions output a
GPU packet with the RGB value placed at the beginning of the packet. The GPU packet and the RGB code
are a single word, so the RGBcd portion of the packet may be created with one memory write. If the GPU
packet code register is not specified correctly, the GPU packet cannot be properly generated.

With functions that have no input primary color vector, you should call SetRGBcd() to set the primary color
vector and GPU code. These functions are Intpl(), NormalColor(), and NormalColor3().

With functions that do have input color vectors, the GPU packet code is automatically copied from the
upper 8 bits of the color vector to the GPU packet code register. These functions are: ColorCol(),
ColorDpq(), ColorMatCol(),ColorMatDpq(), DpgColorLight(), DpgColor(), DpgColor3(), NormalColorDpq(),
NormalColorDpg3(), NormalColorCol(), NormalColorCol3(), RotColorDpq(), RotColorDpg3(),
RotAverageNclipColorDpg3(), RotAverageNclipColorCol3(), RotColorMatDpq().

Normal Line Clipping

Normal line clipping is a method of increasing drawing speed by not drawing polygons that are visible from
the back. Whether something is visible from the front or from the back is determined by the sign of the Z
component of the normal line screen coordinate system of the polygon.

Normal line clipping is effective when there is a closed curved surface such as that of a sphere. This is also
effective in reducing the so-called Z sorting problem.

Run-Time Library Overview CONFIDENTIAL

Basic Geometry Library

Normal Line Clipping Function

The Z component of a polygon normal line screen coordinate system is found by converting the
coordinates of the normal line. It may also be found by the vector product of the two sides of the polygon.

A function calculating the 2-dimensional vector product for normal line clipping, Normal Clip() is provided in
the basic geometry library. NormalClip() calculates a value to distinguish between the front and back of
triangles from the screen coordinates of three vertices. Front and back can be judged by whether the return
value is positive or negative, but the sign will change with the direction of the coordinate axis, and the order
of the vertices. Here we hypothesize a coordinate system.

Figure 9-1: Coordinate Axes

Z+

eye Y+
The viewpoint is in the negative direction of the Z axis. Looking from the view point, with the three vertices
arranged clockwise, NormalClip() will return a positive value.

Figure 9-2: Vertex Order
0 1

2

With the following performing the same calculation as NormalClip(), normal line clipping is performed,
coordinate calculation is halted and an incorrect sx, sy value is returned when the vector product is
negative or 0. When using these functions, the order of the vertices of a polygon must be modeled so that
they will rotate clockwise when seen from the front.

RotNclip()

RotNclip3()

RotNclip4()
RotAverageNclip3()
RotAverageNclip4()
RotAverageNclipColorDpg3|()
RotAverageNclipColorCol3()

RotNclip4() and RotAverageNclip4() are functions which perform the same calculations as NormalClip().
Since these functions use the first three points and calculate a vector product value, you must use one of
the vertex orderings from Figure 8-3.

CONFIDENTIAL Run-Time Library Overview

9-9

Basic Geometry Library

Figure 9-3: Four Vertices

(1M (2)

0 1 0
or

1

2

3 3

2

However, since GPU will not draw rectangles in the order indicated by (2), it is sensible to use (1).

Depth Cueing

Depth cueing is an effect that makes objects at a distance appear hazy. It is accomplished by blending the
original polygon color with the far color, as a function of the Z-value of the screen coordinate system. If the
far color is white, distant objects appear slightly obscured by fog. If the far color is black, distant objects
appear dark.

The following depth-queuing terms are used in the PlayStation:
» Back Color, BK - Ambient color set by SetBackColor()

» Far Color, FC - Far color set by SetFarColor()

» BG Color - The color applied in the background

To blend colors into the background with depth cueing, match the far color and the background color.
Note that back color and BG color differ.

Depth cueing methods can be broadly divided into two categories:

» Using vertex colors. This method is used with non-textured polygons. It can also be used with textured
polygons, in cases where

a) either the far color is black or very dark

b) The texture is relatively bright and composed only of colors close to the far color without any dark
points. In this case, the object may not completely blend with the far color.

» Using texture colors. This method can be used with textured polygons in general.

Implementation of Depth Cueing (Common Operations)

Interpolation coefficients

The GTE can perform efficient depth cueing through non-linear interpolation of the far color. You set the
depth for depth cueing by calling SetFogNear(), SetFogFar(), or SetFogNearFary().

Once the depth has been set, the non-linear interpolation coefficient p can be obtained by calling one of
the RotTransPers() functions, with p having a value within the range 0 to 4096.

If Z is sufficiently small, the value of p will saturate at O. If Z is sufficiently large, the value of p will saturate at
4096 (please refer to the descriptions for the SetFog...() functions for more information).

In general, the depth cueing interpolation calculation can be represented by
interpolation calculation (o,f,p) = ((o x p) + (f x (4096-p))) / 4096

where o is the original color, fis the far color, and p is the interpolation coefficient.

Run-Time Library Overview CONFIDENTIAL

Basic Geometry Library 9-11

If the far color is the same as the background color, rendering the polygon is unnecessary if p is 4096. For
a given otz value, otz2p() can be used to obtain roughly the same value of p as the interpolation coefficient
generated by GTE. Conversely, p2otz() can be used to determine otz from p. p2otz() and otz2p() are
relatively expensive functions that make use of division. It is also possible for the user to specify an
independent value for the interpolation coefficient p.

Method for preparing interpolated data (using CLUT or texture)

Data can be prepared for different values of p beforehand or generated for specific values of p at runtime.
DpqgColor() is useful for interpolating colors such as these. (Use SetFarColor() to set the far color before
calling DpgColor().)

Depth Cueing Using Vertex Colors

The vertex color method of depth cueing intepolates the polygon vertex colors with the far color. To use it:

Set depth using the SetFog...() functions

Call SetFarColor() to set the far color.

Use the RotTransPers...() functions to obtain the interpolation coefficient p for each vertex of each
polygon.

Pass p to a function such as NormalColorDpq(), which selects a vertex screen color that has been
interpolated with the far color. Besides NormalColorDpg...(), DpgColor...(), ...ColorDpg() and Intpl()
functions can also be used for this calculation.

Depth Cueing Using Textures

The texture method of depth cueing interpolates the texture color and the far color. The implementation
method is different for each case.

What color to interpolate:

Interpolation using CLUT colors
CLUT interpolation can be performed for textures that use a CLUT.
Interpolation using the colors of the texture itself

For textures that do not use a CLUT, the only option is to interpolate with the colors of the texture itself. For
textures that use a CLUT, depth cueing can be applied when textures are selected according to depth (e.g.
by using the mip-map method). In these cases, interpolation based on texture color can be used in
conjunction with interpolation based on the CLUT.

Methods of generating interpolation data

CLUT or texture data can be generated in advance for different values of the interpolation coefficient p,
then used according to the Z and p values of the polygon or object to be rendered. This method
minimizes calculation time, but requires more memory to store the data, and the resolution of p cannot
be very high.

CLUT or texture data can be generated at runtime for specific values of p. This method requires more
calculation time during execution, but relatively little memory is needed, and p can have a high
resolution.

Changing the rendered texture

Changing the coordinates referred to by the polygon (CLUT or texture)

Data for different values of p are saved in free areas in the frame buffer. Depth cueing is implemented
by changing the texture coordinates, the CLUT ID, the texture page ID, etc. referred to by each
polygon.

CONFIDENTIAL Run-Time Library Overview

9-12 Basic Geometry Library

» Changing the CLUT or texture in the frame buffer

In this method, the rendered texture is changed by substituting the CLUT or texture in the frame buffer.
Since polygon packets do not need to be changed, texture depth cueing can be easily rendered using
the extended graphics library (libgs).

The following three methods can be used to modify data in the frame buffer:

1. Using DR_LOAD primitives

Data is set up in DR_LOAD primitives and written to the frame buffer. Large amounts of data can be
divided up into multiple DR_LOAD primitives. In these cases, it is faster to divide up the data so that it
is arranged as wide as possible in the frame buffer.

If one interpolation coefficient p can be used for a single CLUT or texture in a single frame, then this
information is entered into the beginning of the ordering table and rendered. If multiple occurrences of
p, corresponding to depth, are to be used for a single CLUT or texture in a single frame, the following
operations should be performed. DR_LOAD primitives are entered into multiple places in the ordering
table to transfer data for the values of p corresponding to the otz values.

In the following examples, four values of p are used. Polygons are assumed to have been entered
beforehand into the ordering table using DrawOTag() or libgs.

Figure 9-4: Writing data using DR_LOAD primitives

P 4096 p2 p1 0
otz far +— i l l l — near
R R N R N B N B B B A B B B
S sy s s s s s s sy By e e i O}
Aab d e f g i D j k
c B h |
C

Since polygons deeper than P=4096 do not merge into the
background, they are not drawn. The DR_LOAD primitive is
registered to the otz head when drawing is necessary.

a-1: polygon
A-D : DR_LOAD primitive

: DR_LOAD transfers (p = 4096 + p2) / 2) data
: DR_LOAD transfers (p = p2 + p1) / 2) data

: DR_LOAD transfers (p = p1 + 0) / 2) data

: DR_LOAD transfers (p = 0) / 2) data

ooOwm>»

For a value of p corresponding to a rendering range from p1 to p2, a DR_LOAD primitive (B in the
Figure) for transferring data using p is entered into the otz position corresponding to p2. A DR_LOAD
(Cin the figure) for transferring data using the next p is entered into the otz position corresponding to
p1.

Run-Time Library Overview CONFIDENTIAL

Basic Geometry Library

For example, the rendering sequence for the case shown in the figure would be
A-a-b-c-d-e-B-f-g-h-C-i-D-j-k-|

Polygons a - e would be rendered with the data transferred using DR_LOAD A, polygons f - h are
rendered with the data transferred using DR_LOAD B, and so on.

Writing data using DR_MOVE primitives

In this method, data for different values of p is written into free areas of the frame buffer. The data is
transferred to the actual locations used for rendering before the polygons are rendered. As in the case
with the DR_LOAD primitives above, data can be saved in the ordering table so that depth cueing can
be achieved on multiple polygons using a single CLUT or texture with values of p corresponding to the
depths of each of the polygons.

Using Loadlmage() to transfer data from main memory

In this method, Loadlmage()is used to transfer data from main memory to the area to be used in the
frame buffer. Note that using Loadlmage() too often causes a heavy load on the CPU. Thus, this
method is not appropriate if multiple values of p need to be used for a single CLUT or texture within a
single frame.

Material Light Source Calculation with Material Quality

Light source calculation in PlayStation (without depth cueing) is summarized as follows:

1.

10 Nx[

ipp=ll o
@38 BNz0

ATrd 010 BKrd
%ngz [LRi] %2% %Kgg
[T 38 Kb

RR=RxLTr
GG=GxLTg
BB=BxLTb

Notes:

(Nz, Ny, Nz): Normal vectors

[Li]: Local light matrix (LLM)
(L1,L2,L3): Local light vector (LLV)
[Lri]: Local color matrix (LCM)

(BKr, BKg, BKb): Back color (BK)
(RLT,GLT,BLT): Local color (LC)

(R, G, B): Original color vectors
(RR, GG, BB): Output color vectors

CONFIDENTIAL Run-Time Library Overview

9-14 Basic Geometry Library

In this manual the calculation above is abbreviated in the following way:

1. LLV=LLMx VO

2. LC=BK+LCMx LLV

3. v2=v1xLC

Following the calculation of (1) you may also obtain LLV again with each item of LLV squared in the
following manner:

LLV = LLM x vO

LLV = LLV? = (L17, L27 L3

LC =BK + LCM x LLV

4, v2=v1xLC

wn o

If this is done, the lighted portion on screen will become narrower and the material quality of the object will
appear to have changed. The basic geometry library provides

e RotColorMatDpg
» ColorMatDpqg
« ColorMatCol

as functions with material quality.

Functions with Three or Four Vertices

There are functions in the basic geometry library which perform one-off coordinate conversion of polygons
with three or four vertices, and light source calculation.

For example, RotTransPers3() and RotTransPers4() functions do one-off coordinate conversion of three and
four vertex polygons respectively. Also NormalColorCol3() and NormalColorDpg3() convert the 3 vertex light
source calculation once.

By using these functions, triangles and rectangles with independent vertices may be drawn at high speed.

libgte Argument Format

In the GTE, all numbers are expressed in fixed-point notation. For example, each component of a rotational
matrix is a (1,3,12) fixed-point number, which means:

* Sign: 1 bit
* Integer value: 3 bits
* Fractional value: 12 bits

Because of this, RotTrans (&0, &v1, &flag) is calculated in the following manner.

v1.vxO vOo.vxO [ORxO

_ [O O
1 wir il gowg+ FRve
F1.vz§ B0.vz§ HRzQ

[fROO % vO.vx + RO1x vO.vy + R02x v0.vz) >>12[0 [OJRx
= %Rmx VO.VX + R11x VO.vy + R12x v0.vZ) > 1 2%+ %Ry%
fR20x vO.vx + R21x v0.vy + R22x v0.vz) >>12F HRzQ

Run-Time Library Overview CONFIDENTIAL

Basic Geometry Library 9-15

v1.vx = TRX + (ROO x vO.vx + RO1x vO.vy + R0O2 % vO.vz) >>12
vli.vy=TRY + (R10x vO.vx + R11x vO.vy + R12x v0.vz) >>12
vl.vz=TRZ+ (R20 % vO.vx + R21x vO.vy + R22 x v0.vz) >>12

v0, v1 are of type SVECTOR.

t ypedef struct{
short vx, vy;
short vz, pad;

} SVECTOR;

[Rij] is a rotation matrix, (TRX, TRY, TRZ) are translating vectors. Therefore the formats of VO and V1 less

than the decimal point are the same as (TRX, TRY, TRZ2).

The format of (TRX, TRY, TRZ) is (1, 31, 0), so that vO is (1, 15, 0) and v1 is (1, 31, 0).

Recommended Format

The recommended format for GTE constants is shown below. Though formats other than this may be
calculated, it becomes difficult and it must be taken into account that a 12-bit shift is built into the GTE.
Please refer to the libgte reference manual for the argument format of each function.

Table 9-1: Recommended Format for GTE Constants

Back color (RBK, GBK, BBK)

0,32,0)(0...255)

[tem Bit Format
Rotational matrix [Rij] (1,3,12)
Translating vector (TRX, TRY, TR2) (1, 31,0
Local light matrix [Lij] (1,3,12)
Local color matrix [L (R, G, B) i] (1,3,12)

(

(

Far color (RFC, GFC, BFC)

0,32,0)(0...255)

Libgte Function Flag Variables

Flag variables are returned by the following coordinate calculation functions for performing clipping:

RotTransPers(), RotTransPers3(), RotTrans(), RotTransPers4(), RotAverage3(), RotAverage4(),
RotNclip(), RotNclip3(), RotNclip4(), RotAverageNclip3(), RotAverageNclip4(), RotColorDpq(),
RotColorDpg3(), RotAverageNclipColorDpg3(), RotAverageNclipColorCol3(), RotColorMatDpq()

The flags return to their original state immediately after the functions have finished their coordinate
transformations.

Functions doing coordinate transformations on 3 or 4 vertices, such as RotTransPers3() or
RotTransPers4(), return an OR of the coordinate transformation result for each vertex. When RotNclip4() or
RotAverageNclip4() return a value of -1 (that is, when a vertex cannot be calculated due to a normal clip) it
is treated as if it were an OR of the result from a 3-vertex coordinate transformation.

The flag bits are as follows:

Table 9-2: Flag Bit Settings
Bit Contents
31 (B0)1(29) 1 (28) 1 (27) 1 (26) | (25) 1 (24) 1 (23) 1 (18) 1 (17) 1 (16) | (15) [(14) | (13) 1 (11)
30 Calculation overflow (>=2/43)
29 Calculation overflow (>=2/43)

CONFIDENTIAL Run-Time Library Overview

9-16 Basic Geometry Library

Bit

Contents

8
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11~0

Calculation overflow (>=2/43)

Calculation overflow (<-2/43)

Calculation overflow (<-2/43)

Calculation overflow (<-2/43)

The output value exceeds (-2/15, 2/A15)

The output value exceeds (-2/15, 2A15)

The output value exceeds (-2/15, 2A15)

Output value exceeds(0, 2/8)

Output value exceeds (0, 2/\8)

Output value exceeds (0, 2/\8)

The value of Z in the screen coordinate system exceeds (0, 2/216)

The Z coordinate is smaller than h/2 after perspective transformation*
Calculation overflow (>=2/32)

Calculation overflow (<-2/32)

The X coordinate exceeds (-2A10, 2210) after perspective transformation
The Y coordinate exceeds (-2/A10, 2/10) after perspective transformation
The value of p exceeds (0, 2/ 12)

Not used

* h is the distance between the viewpoint and the screen.

The following functions return 16-bit flags: RotTransPersN(), RotTransPers3N()

The 16-bit flag bits are as follows:

Table 9-3: 16-Bit Flag Bit Settings

Bit

Contents

15
14
13
12

11

o

SO =4 N W >0 OO N 0o o =

Calculation overflow (>=2/43)
Calculation overflow (>=2/43)
Calculation overflow (>=2/43)

The value of X in the screen coordinate system before perspective
transformation exceeds (-2715, 2A15)

The value of Y in the screen coordinate system before perspective
transformation exceeds (-2715, 2/15)

The value of Z in the screen coordinate system exceeds (-2A15, 2A15)
Output value exceeds (0, 2/\8)

Output value exceeds (0, 2/\8)

Output value exceeds (0, 2/\8)

The value of Z on the screen coordinate system exceeds (0, 2/°16)

The Z coordinate is smaller than h/2 after perspective transformation*
Calculation overflow (>=2/32)

Calculation overflow (>=2/32)

The X coordinate exceeds (-2°10, 2210) after perspective transformation
The Y coordinate exceeds (-2/A10, 2/10) after perspective transformation
The value of p exceeds (0, 2/M12)

* h is the distance between the viewpoint and the screen.

CONFIDENTIAL

Run-Time Library Overview

Basic Geometry Library 9-17

About libgte Mesh Functions

The basic geometry library supports two types of triangular mesh data. By using mesh data, the number of
vertex calculations and the volume of data can be reduced.

One is called Strip Mesh and the vertices are arranged in zig-zags as shown below:

Figure 9-5: Strip Mesh
1—3
0 2 4

The other is called Round Mesh and the vertices surround vertex O as shown below:

Figure 9-6: Round Mesh
2——3
1 0 4
In either case, when the first triangle 012 is clockwise in this order, 012 is displayed and the fronts and
backs of the other three triangles will be determined by this triangle.

However, when performing light source calculation (shading and depth cueing) with this type of data,
normal line clipping cannot be performed so the calculation is not always speeded up. Mesh data is
effective in improving calculations with “no shading and depth cueing” and “flat shading.”

Changing Screen Offsets

There are two methods for altering the PlayStation screen offset. One is to use the libgpu function
SetDefDrawEnv(). The other is to use the SetGeomOffset() function provided in the basic geometry library.

PMD Functions

Libgte has PMD functions that link GPU packets to the created OT, after they perform coordinate
transformations, when reading the data formats shown below. GPU packet data is preset for constants,
color variables, texture variables, and the like, so drawings can be done at high speed if just the coordinate
variables are set.

PRIMITIVE Group

In PMD data, when polygons having the same attributes are grouped together and the PRIMITIVE Gp
object components (primitives) drawing packet is drawn up, one packet represents one primitive.

A primitive defined in PMD is different from a libgpu primitive. Together with the processing of the
perspective conversion by libgs it is also converted to the drawing primitive.

CONFIDENTIAL Run-Time Library Overview

9-18 Basic Geometry Library

One primitive group is shown below.

Figure 9-7: PACKET Gp Configuration

bit31(MSB) bitO(LSB)

TYPE | NPACKET
Packet Data #0
Packet Data #1
Packet Data #2

NPACKET:Number of packets
TYPE : Packet type

Table 9-4: 4-Type Bit Configuration

bit No. When O When 1

16 Triangle Quadrilateral

17 Flat Gouraud

18 Texture-On Texture-Off

19 Independent Vertex Public Vertex

20 Light Source Calculation OFF Light Source Calculation ON
21 With Back clip No Back clip

22-31 (Reserved)

The Packet Data configuration changes with the TYPE value. The separate TYPE Packet Data configuration

is as follows:

Note 1: In order to make the Primitive section (POLY_***) in the configuration correspond to the double

buffer, two sets are provided.

Both contents must be initialized beforehand.

Note 2: Bit 20,21 have no effect on the Packet Data configuration.

TYPE Packet Data Configurations

TYPE=00 (Triangle/Flat/Texture-On/Independent Vertex)

struct _poly ft3 {
POLY_FT3 pkt[2];
SVECTOR v1, v2, v3;
}

TYPE=01 (Quadrilateral/Flat/Texture-On/Independent Vertex)

struct _poly ft4 {
POLY_FT4 pkt[2];
SVECTOR v1, v2, v3, v4;
}

TYPE=02 (Triangle/Gouraud/Texture-On/Independent Vertex)

struct _poly gt3 {
POLY_GT3 pkt[2];
SVECTOR v1, v2, v3;
}

Run-Time Library Overview

CONFIDENTIAL

Basic Geometry Library 9-19

TYPE=03 (Quadrilateral/Gouraud/Texture-On/Independent Vertex)
struct _poly_gt4 {
POLY_GT4 pkt[2];
SVECTOR v1, v2, v3, v4,;
}

TYPE=04 (Triangle/Flat/Texture-Off/Independent Vertex)
struct _poly_f3 {
POLY_F3 pkt[2];
SVECTOR v1, v2, v3;
}

TYPE=05 (Quadrilateral/Flat/Texture-Off/Independent Vertex)
struct _poly f4 {
POLY_F4 pkt[2];
SVECTOR v1, v2, v3, v4,;
}

TYPE=06 (Triangle/Gouraud/Texture-Off/Independent Vertex)
struct _poly_g3 {
POLY_G&3 pkt[2];
SVECTOR v1, v2, v3;
}

TYPE=07 (Quadrilateral/Gouraud/Texture-Off/Independent Vertex)
struct _poly_g4 {
POLY A pkt[2];
SVECTOR v1, v2, v3, v4;
}

TYPE=08 (Triangle/Flat/Texture-On/Shared Vertex)
struct _poly_ft3c {
POLY_FT3 pkt[2];
long vpl, vp2, vps3;
}

TYPE=09 (Quadrilateral/Flat/Texture-On/Shared Vertex)
struct _poly_ftdc {
POLY_FT4 pkt[2];
long vpl, vp2, vp3, vp4;
}

TYPE=0a (Triangle/Gouraud/Texture-On/Shared Vertex)
struct _poly_gt3c {
POLY_GT3 pkt[2];
long vpl, vp2, vp3;
}

TYPE=0b (Quadrilateral/Gouraud/Texture-On/Shared Vertex)
struct _poly_gtdc {
POLY_GT4 pkt[2];
long vpl, vp2, vp3, vp4;
}

CONFIDENTIAL Run-Time Library Overview

9-20 Basic Geometry Library

TYPE=0c (Triangle/Flat/Texture-Off/Shared Vertex)
struct _poly_f3c {
POLY_F3 pkt[2];
long vpl, vp2, vp3;
}

TYPE=0d (Quadrilateral/Flat/Texture-Off/Shared Vertex)

struct _poly_fdc {
POLY_F4 pkt[2];

long vpl, vp2, vp3, vp4;
}

TYPE=0e (Triangle/Gouraud/Texture-Off/Shared Vertex)

struct _poly_g3c {
POLY & pkt[2];
long vpl, vp2, vp3;
}

TYPE=0f (Quadrilateral/Gouraud/Texture-Off/Shared Vertex)

struct _poly_g4c {
POLY &4 pkt[2];

long vpl, vp2, vp3, vp4;
}

The pkt[] is the corresponding drawing primitive packet, the v1~v4 values are the vertex coordinate values,
and the vp1~vp4 values are the offsets from the head of the shared coordinates string.

VERTEX

The VERTEX section is the SVECTOR structure array which displays the shared vertex. One structure
format is shown below:

Figure 9-8: VERTEX
MSB LSB

vy VX
\/

VXY, VZ: x,y,z values of vertex coordinates (16 bit integers)

SMD, RMD Functions

The SMD and RMD functions are high-speed versions of the PMD function. They both process the same
data format as the PMD function. The SMD function usually performs normal clipping, while the RMD
function usually does not.

Run-Time Library Overview CONFIDENTIAL

Basic Geometry Library 9-21

Polygon Division

The PlayStation is designed to form many small polygons efficiently. When larger polygons are broken
down into smaller ones using division, clipping is performed more efficiently, and texture distortion is

reduced.

The polygon division process uses the automatic division attribute of libgs that is applied to objects, or it

can be invoked by directly calling one of the functions listed below.

Table 9-5: Polygon Division Functions

Function name

Corresponding primitive

DivideF3
DivideF4
DivideFT3
DivideFT4
DivideG3
DivideG4
DivideGT3
DivideGT4

Flat Triangle

Flat Quadrilateral

Flat Texture Triangle

Flat Texture Quadrilateral
Gouraud Triangle

Gouraud Quadrilateral
Gouraud Texture Triangle
Gouraud Texture Quadrilateral

CONFIDENTIAL

Run-Time Library Overview

9-22 Basic Geometry Library

Run-Time Library Overview CONFIDENTIAL

Chapter 10:
Extended Graphics Library

Table of Contents

Overview 10-3
Library and Header Files 10-3
Libgs features 10-3
Coordinate Systems 10-4
Order of Rotation/Translation 10-4
Clearing Flags 10-5
Examples of Coordinate System Setting 10-5
Objects 10-5
Object Initialization 10-6
Object Movement (Hierarchical Structuring) 10-6
Object Attribute Control 10-6
Viewing System 10-6
Viewpoint Setting 10-6
Screen Setting 10-7
Light Sources 10-7
Parallel Light 10-7
Ambient Light 10-7
Depth Cueing 10-8
Material Lighting 10-8
Drawing Priority Order (Ordering Table) 10-8
GsOT and GsOT_TAG 10-8
OT Initialization 10-9
Multiple OTs 10-9
OT Compression 10-9
Z-Sort Problem 10-9
OT Double Buffer 10-9
Frame Double Buffer 10-10
Double Buffer Expression 10-10
Frame Double Buffer During Interlace 10-10
Clipping 10-10
Two-dimensional Clipping 10-11
Three-dimensional Clipping 10-11
Near Clipping Problem 10-11
Packet Preparation Function 10-11
Packet Buffer 10-11
Preset Packets 10-12
TMD Sort 10-13
Packet Creating Functions 10-13

CONFIDENTIAL Run-Time Library Overview

10-2 Extended Graphics Library

Packet Area 10-14
Packet Double Buffer 10-14
Drawing 10-15
Processing Flowchart 10-15
Jump Tables 10-15
Purpose 10-15
Usage 10-16
Scratch Pad Usage Volume 10-16
Scratch Pad Consumption Status 10-17
Scratch Pad Consumption Volume 10-17
Method for Common Use of Scratch Pad by the User Program and Library 10-17
Mip-map Library 10-17
Usage Method 10-17
Texture Location 10-19
Polygon Vertex 10-19

Run-Time Library Overview CONFIDENTIAL

Extended Graphics Library 10-3

Overview

The extended graphics library (libgs) integrates the 2D and 3D graphics systems used in libgpu and libgte.

It is designed to work well with the standard graphics file formats that can be created by PlayStation

authoring tools:

* The TIM format stores image resolution, color numbers and color look-up table information.

» The TMD format stores multiple objects, scale information and texture address information.

« HMD is a new format that was added in version 4.0 of the libraries. See Chapter 18, “HMD Library”, for
more information about this format.

In contrast with the libgpu and libgte libraries which process polygon-level data, libgs processes data by
object units (groups of polygons), allowing 3D programs to be prototyped easily. By adding attributes to
objects, it's easy to create special effects.

Using libgs involves extra overhead compared to using libgpu and libgte. However, libgs is an open
architecture. Therefore, once you are ready to produce your game, you can optimize it by adding user-
defined functions (via a jump table) that use libgpu and libgte services.

Library and Header Files
To use the extended graphics library, you must link with the library file | i bgs. | i b.

Source code must include the header file | i bgs. h.

Libgs features
The main features of libgs are:

e Hierarchical coordinate systems

Any object’s coordinate system can be designated as a parent or a subordinate of another. Changes
to the parent coordinate system are automatically applied to the subordinates.

» Light source calculation (3 light sources, depth queuing, ambient)

Libgs performs automatic lighting calculations using parameters set by the user.
* Automatic division of polygons

Libgs can automatically sub-divide large polygons to avoid problems associated with clipping.
* Semi-transparent processing

Objects and/or their textures can be drawn as semi-transparent/translucent by setting the appropriate
attributes

» Perspective texture mapping of objects.
* Viewpoint control

You can easily manipulate the viewing angle using the view structures defined within libgs.
e Z-sort processing

You can sort and draw objects according to their Z-depth values by using the GsOT structure and the
GsSort functions.

» QT initialization hierarchic compression

Objects with greatly differing Z values may be sorted into separate OTs (Z-sort ordering tables) and
then linked into one OT prior to drawing.

CONFIDENTIAL Run-Time Library Overview

10-4 Extended Graphics Library

* Frame double buffer

Libgs implements a graphics double-buffer system , in order to avoid the problems associated with
drawing into memory being displayed. Initialization and switching of the buffers are easily performed.

e Automatic adjustment of aspect ratio

When the view aspect ratio is not normal dot, the display of an object’s vertical is automatically
adjusted to appear as a normal dot aspect ratio.

* 2D clipping offset processing

Libgs performs 2D clipping according to values set by the user. In addition, you can define a 2D offset,
which will be added to the screen coordinates of all objects prior to display.

» Sprite/BG/Line

Libgs provides structures and routines for easily displaying 2D sprites, lines, and cell-based scrolling
backgrounds.

* libgpu/libgte coexistence
Libgs combines Libgs(2D) and Libgte(3D) into a complete, easy to manage, 3D graphics pipeline.

Coordinate Systems

GsCOORDINATE?2 is a structure describing a libgs coordinate system. The coordinate system is a
hierarchical structure which takes the world coordinate system as the most significant, and it is integrated
from a lower level to a higher level.

GsCOORDINATE2’s members describe the coordinate system and a work area for speeding up coordinate
calculations. The MATRIX parameters describe the coordinate system relative to its parent coordinate
system. For the size of the coordinate system space, X, Y and Z are all 32 bits.

The definition of the GsCORDINATEZ2 is as follows:
struct GsCOORDI NATE2{

unsi gned long flg; /*0: coord has been rewritten 1: workm
val ues are still valid*/

MATRI X coor d; /*A 3 x 3 matrix containing coordinate
rotation, translation, and scal e info*/

MATRI X wor km /*Result of multiplication of coord with
the WORLD coordi nate systent/

Gs COORD2PARAM * par am /*rotation, scale, and transl ation
par anet er s*/

Gs COORDI NATE2 *super ; /*pointer to superior coordi nate systent/

Gs COORDI NATE2 *sub; /*pointer to subordinate coordinate
systent/

i
GslInitCoordinate?() initializes the members of GsCOORDINATEZ2. You can also set the members directly.

Order of Rotation/Translation
Rotation is executed first, followed by translation.

The order of rotation,when the rotation matrix is created by the function RotMatrix() and set in
GsCOORDINATEZ2, is [Z --> Y --> X].

Run-Time Library Overview CONFIDENTIAL

Extended Graphics Library 10-5

Clearing Flags

When requesting local-to-world matrix from the hierarchical coordinate system, optimization is
accomplished by setting the flg member of a previously calculated coordinate system to 1 and preserving
the results stored in the member workm.

If the parameters of a GsCOORDINATE2 have been rewritten, always remember to set flg to zero,
indicating that the contents of workm have already been used. Recalculation will not be performed unless
flg is zero.

If parent coordinates are modified, this is automatically reflected in all of the child coordinates, so there is
no need to clear the child coordinate’s flag.

Examples of Coordinate System Setting

Examples of translation and rotation are presented below.

Example 1: Translation

GsCOORDI NATE2 sanpl e_coor d; / *coordi nate system which sets translation */
int x,y, z; [*amount of parallel shift*/
sanmpl e_coord.coord.t[0] = x;
sanmpl e_coord.coord.t[1] =vy;
sanmpl e_coord.coord.t[2] = z;
Example 2: Rotation
Gs COORDI NATE2 sanpl e_coord; /*coordinate systemin which rotation is
set */
SVECTOR rot; [*rotation angle set (x,y,z)*/
MATRI X t mp1; [*rotation matrix requested*/
Rot Matri x(& ot, & npl); /*when RotMatrix() is used the order of

rotation is zyx*/
sanpl e_coord. coord = tnpl;

Objects

You manipulate objects by means of 3D object handlers. This section explains the basic object handler
used by libgs, GsDOBJ2. The other types of object handlers are GsDOBJ3 and GsDOBJ5.

GsDOBJ?2 is defined as follows:

struct GsDOBJ2{
unsigned long attribute;
GsCOORDI NATE2 *coor d2;
unsi gned | ong *tnd;
unsigned long id;

}

coord2 is a pointer to the coordinate system. An object’s location may be controlled by setting the
members of the corresponding GsCOORDINATE?2 structure.

attribute is for setting object attributes: general attributes such as display/non-display or special effects
such as switching of the light source calculation method. See the explanation of GsDOBJ2 in the
Run-Time Library Reference for details.

CONFIDENTIAL Run-Time Library Overview

10-6 Extended Graphics Library

Object Initialization

Handling an object with GsDOBJ2 requires linking the handler with the read-in TMD data. To do this, you
can use GsLinkObject4(), which sets the GsDOBJ2’s tmd member to the address of the TMD object to be
linked to it.

Object Movement (Hierarchical Structuring)

Different objects may be linked by defining a hierarchy in the coordinate system in which an object’s
member coord? is specified as subordinate to another object’s GsCOORDINATE2.

In the following figure, Object 1 is defined as the super coordinate system of Object 2:

Table 10-1: Hierarchical Structuring

GSDOBJ2 COORDINATE2

Object1 —_— Coordinate1
_ T

Object2 Coordinate2

When Object 1 moves, the location of object 2 is affected as well. When Object 2 moves, Object 1’s
location is not affected.

Object Attribute Control

The bits of the GsDOBJ2 attribute member control several properties of objects, such as material
attenuation, lighting mode, near clipping, back clipping, and automatic division. See the description of
GsDOBJ2 in the Run-Time Library Reference for more detailed information.

Viewing System

In 3D graphics, the image displayed on the two-dimensional screen is a projection of 3D space onto a
“window” (viewing-plane), at a specified distance in front of the viewpoint. The viewpoint and “window”
value must be set in order to project an image.

Viewpoint Setting

The viewpoint is set by substituting values in the GsRVIEW2 or GsVIEW?2 structure members and calling
GsSetRefView?2() or GsSetView?2().

The difference between GsRVIEW2 and GsVIEW?2 is in the viewpoint setting method.

GsRVIEW?2 sets the viewpoint by setting the coordinates of the viewpoint and a reference point. GsVIEW2
sets the viewpoint by directly setting a transformation matrix to the viewpoint coordinate system.

Both GsVIEW2 and GsRVIEW?2 can set a coordinate system which becomes the standard in super. For
example, if the standard coordinate system is treated as a world coordinate system, it becomes an
objective viewing camera, and if the coordinate systems of each object are taken as local coordinate
systems, it becomes a subjective viewing camera for that object.

Run-Time Library Overview CONFIDENTIAL

Extended Graphics Library 10-7

Screen Setting

The distance between the viewpoint and the screen is called projection (h). Projection is set by the
GsSetProjection() function.

The vertical and horizontal of the screen are equal to the current display resolution. For example, if the
display resolution is 640/480, the horizontal of the screen is 640 and the vertical is 480.

When the display resolution is not normal dot (4 to 3 aspect ratio) the vertical is adjusted. For example, in
the case of 640/240 dot, the vertical of an object is displayed by reducing it by 1/2. In appearance, this is
the same as a normal dot aspect ratio.

To use the libgs three-dimensional service, it is necessary to execute the GsInit3D() function and initialize
the screen coordinates. In this way, the center of the screen is the origin of the screen coordinates.

Figure 10-1: Viewpoint and Screen

, D Visual point
h——

Projection /

Screen

Projection adjusts the angle of an image. If projection is large, the image angle is narrow and is close to
parallel projection. If projection is small, the image angle widens, and it becomes a picture in which the
impression of perspective is emphasized.

Light Sources

Parallel Light

Libgs allows a maximum of 3 parallel light sources. With a parallel light source, the brightness of a polygon
is determined only by the light source and the angle of the polygon. A light source is set by the direction of
the light source and its color.

A light source is specified in the system by setting the members of a GsF_LIGHT structure and calling
GsSetFlatLight().

Ambient Light

Ambient light is the surrounding light. Even though light does not directly strike it, the shape of an object
may be seen with the surrounding light. Ambient light is created in order to achieve this type of
phenomena.

For example, if the spot where the light strikes is 1 and spots where the light does not strike are 0.5,
GsSetAmbient() is executed as follows (ONE expresses the fixed-point 1):

GsSet Anbi ent (ONE/ 2, ONE/ 2, ONE/ 2) ;

In general, the image becomes warm when the ambient light values are increased and cool when they are
decreased.

CONFIDENTIAL Run-Time Library Overview

10-8 Extended Graphics Library

Depth Cueing

When varying the brightness of an object according to the distance from the viewpoint, distant objects may
be dimmed. This is called depth cueing or fog.

Depth cueing may be executed normally for all non-textured polygons. It is possible for texture-mapped
polygons only when the color is black.

To use depth cueing, call GsSetlLightMode(1) or GsSetLightMode(3) to set cueing on. Then call
GsSetFogParam(), passing a GsFOGPARAM structure specifying background colors.

When the background colors are made whitish, the result is the fog effect. When they are made black,
there is a “night-time” effect. This is effective in making something like a dungeon difficult to see by
darkening the distance.

Depth cueing can be performed on texture-mapped polygons at any time by switching the length of the
CLUT. This method is not currently supported in libgs.

Moreover, please be aware that background color and ambient color are generally quite different.

Material Lighting

The intensity of light is determined by the angles of the polygon and the light source. However, the feel of a
material can be changed to metallic by making the light attenuation curve steeper. This is called material
lighting.

Call GsSetlLightMode(2) or GsSetLightMode(3) to execute material lighting.

Attenuation is controlled by setting the material attenuation bit of the GsDOBJ2 member attribute, object by
object. The higher the value, the steeper the attenuation and the more the metallic feel increases.

However, this is not possible with the current version.

Drawing Priority Order (Ordering Table)

The PlayStation uses Z-sorting as a method of hidden-surface removal. To speed up the performance of
Z-sorting, the concept of an ordering table (OT) has been introduced. Hereafter, Z refers to a coordinate
value on the axis perpendicular to the view plane; in other words, the distance between the screen and the
polygon.

An ordering table is a kind of Z ruler applied in memory. Each graduation of the ruler may hold any number
of polygons.

Polygons are sorted by placing them at the graduation equivalent to their Z value. This means that if
polygons are placed all the way up to the end, all the polygons will hang on the ruler according to their
Z values. Hidden-surface removal is achieved by transmitting this to a rendering chip and drawing the
polygons at the end of the OT (with the largest Z value) first.

GsOT and GsOT_TAG

Ordering tables are handled in libgs by the GsOT structure, which stores a pointer (member org) to an
actual OT and parameters that indicate the attributes of that OT. The member length represents the
Z graduation resolution as a power of 2 (from 1 to 14). For example, if length is 4, the OT has 2/°4
graduations. Each graduation is represented by a GsOT_TAG structure.

Run-Time Library Overview CONFIDENTIAL

Extended Graphics Library 10-9

OT Initialization

An OT is initialized by the function GsClearOt(). GsClearOt() takes 3 arguments, offset, point and otp. otp is
a pointer to the OT handler. offset and point are explained below.

When an OT is initialized, the polygons are unlinked, and only then is a re-sort possible. Therefore, it is
always necessary to initialize an OT prior to executing a sort.

Multiple OTs

libgs allows multiple Ots, which may be sorted by the GsSortOt() function. The GsOT member point refers
to the representative value Z of an OT.

It is possible to control the sorting order by using multiple OTs. For example, if local OTs are prepared
object by object, and finally collated by sorting the local OTs, sorting by object units is possible.

This is effective when the relationship between before and after is already known, in such cases as when a
helicopter is looking down from above at cars which are being driven on a road.

Also, multiple OTs can also be used to achieve a “split-screen” effect. For example, by drawing one OT to
the top half of the drawing area, switching the drawing environment and viewpoint settings, and drawing
the second OT to the bottom half of the drawing area, two different views can be shown onscreen
simultaneously.

OT Compression
Sort speed will be increased by using OTs. However, OTs consume a considerable amount of memory.

Memory consumption can be reduced by decreasing OT resolution. However, this can cause a polygon
flicker phenomenon (Z-sort problem) due to errors in Z relationships.

Therefore, there is a method of using an offset to reduce OT memory usage without reducing resolution. If
it is known that the Z values of the polygons to be sorted are greater than a certain value, this value can be
passed to GsClearOt() as offset. The OT will not store the part up to offset in memory; therefore, memory
consumption will be reduced.

Z-Sort Problem

When using Z-sort to perform hidden-surface removal, polygons can flicker because of errors in priority
ordering. This phenomena is likely to occur with a polygon of particularly long depth, because its Z value
varies greatly across the polygon, but it is sorted with only one average Z value (the center of gravity).

The Z-sort problem can be resolved by dividing polygons into smaller polygons; however, this has the
drawbacks associated with an increased number of polygons.

Another countermeasure is to sort by object units. When the Z relationship is clear for every object, if this
condition is reflected when sorting, sorting may be achieved without mutual interference of objects.

OT Double Buffer

An OT in which polygons are linked cannot be accessed while it is being drawn. For this reason, you must
use a double buffer technique of preparing 2 OTs when drawing in the background. You sort the OT that is
not being used for drawing.

CONFIDENTIAL Run-Time Library Overview

10-10 Extended Graphics Library

Frame Double Buffer

The PlayStation has a two-dimensional frame buffer, and the image displayed in the window can be
reproduced in video memory as is.

The screen can be switched without being disturbed during vertical synchronization (V Blank). If the
switched screen is accessed during the time when the television screen is being displayed, the screen will
become disturbed.

Due to this both the screen being displayed and the switched screen are necessary. This is called the
display double buffer.

In libgs ,the double buffer is defined by GsDefDispBuff(). GsSwapDispBuff() switches the buffers.
GsGetActiveBuff() can be used to determine which double buffer is currently being drawn.

Double Buffer Expression

Double buffering may be achieved by altering the location of the display area in the frame buffer. The upper
left point of the display area (starting point) does not necessarily have to be in the upper left point of the
frame buffer.

Drawing that goes to the frame buffer must have an offset attached. You may choose from two methods of
offsetting with libgs, determined by the third argument of GsInitGraph():

* Put the offset at the libgte level. The double buffer offset is added at the stage where the packet
calculation is being made.

* Place the offset at the libgpu level. The offset is added at the stage where a frame buffer not attached
to the packet is drawn.

If you are planning on using this in combination with libgpu functions, using the latter method, placing the
offset at the libgpu level, is recommended. Using the former method, compatibility with other than previous
versions cannot be assured.

Frame Double Buffer During Interlace

In interlace mode, you can specify a vertical resolution of 480. In this case, double-buffering is automatic
between even- and odd-numbered scan lines. Therefore, you designate the same buffers as the
GsDefDispBuff() arguments.

When vertical resolution is specified as 240 during interlace mode, it is necessary to set different buffers, as
you do in non-interlace mode.

Clipping

Libgs supports the following kinds of clipping:

* Two-dimensional clipping is clipping after transforming the screen coordinate system.
» Three-dimensional clipping is clipping according to the distance from the viewpoint.

Run-Time Library Overview CONFIDENTIAL

Extended Graphics Library 10-11

Two-dimensional Clipping
The GPU can designate any rectangle in the frame buffer as a clipping area.

The clipping area is registered in the libgs internal variable set by the GsSetClip2D() function.
GsSetDrawBuffClip() sets the internal contents of the variable and makes them effective.

Also, when switching double buffers, switch the clipping area so that an overflowing polygon does not
destroy another buffer.

Three-dimensional Clipping

Libgs supports default values for three-dimensional clipping. Any other clipping must be performed at the
application level. The three-dimensional clipping default values are as follows:

* FAR CLIP - When the screen coordinate system Z value is greater than 65536, the Z value can be
clipped (because the Z value is uncoded 16-bit).

* NEAR CLIP - When the screen coordinate system Z value is less than h/2, the Z value can be clipped
(h is projection).

Near Clipping Problem

The near clipping problem occurs when polygons approach the viewpoint, such as in the road surface of a
racing game, and become extremely large due to their nearness. When clipped by polygon units, large
holes appear in the road surface close to the viewpoint, and this makes viewing difficult.

As a solution to this problem, libgs supports automatic division of polygons. When an approaching object
reaches the near clipping plane, near clipping can be performed smoothly by the setting of the automatic
division attribute. However, since the load from automatic division is heavy, use it only when absolutely
necessary.

Packet Preparation Function

libgs has three kinds of packet creation functions, GsSortObject3(), GsSortObject4(), and GsSortObject5().
Each of these functions is an appropriate choice under different conditions.

Packet Buffer

There are two types of packet buffer:

* Preset packet buffer
¢ Run-time packet buffer

The Preset packet buffer (1) is essential when using the Preset packet buffer object. The object type which
uses the preset packet is the GsSortObject5() function which uses GsDOBJ5. The size of the present
packet is fixed by the model.

Using the GsPresetObject() return value it is possible to find out how far the buffer has been preset. Initially
one preset is necessary.

Since the preset packet creates the packet in the preset buffer area, it does not use up the run-time packet
buffer.

However, when automatic division is set to ON in the GsDOBJ5 attribute, the packet created does
consume the run-time packet buffer.

The Run-time packet buffer (2) is the buffer used when a packet is created during execution.

CONFIDENTIAL Run-Time Library Overview

10-12 Extended Graphics Library

GsSortObject4(), GsSortSprite, etc. use this buffer.

The head of the buffer is specified by GsSetWorkBase() and when GsSortObject4() is called, the packet is
created in that area and the current packet area pointer is taken by GsGetWorkBase().

The amount of the buffer used per frame will increase or decrease depending on the number of polygons
calculated.

Preset Packets

Preset packets are packets that have been made ahead of time. If preset packets are used, it is not
necessary to rewrite every frame. Speed is improved by not having to perform tasks like writing U, V texture
values to memory.

PMD format is an exclusive preset packet modeling format which incorporates both modeling data and
preset packets. GsSortObject5() is the packet creation function for preset packets.

The packet is a collection of structures (primitives) such as libgpu POLY_FT4. The primitive class can be
determined by looking at its type.

To set tpage, set the tpage of the packet structure tpage (if the packet is POLY_FT4, set the tpage of the
structure POLY_FT4).

Figure 10-2: Preset Packet Format

header 0 header0: 32 bits. The upper eight bits indicate the
header 1 preset packet type. The lower 24 bits are a
____________ pointer to the next packet group.
headerl: Indicates the number of preset packets in
preset the packet group. The packet group is
composed of packets of the same type.
paCketS preset packets: The number of preset packets uses double
the number of packets to provide a packet
double buffer.
- header 0
header 1
preset
packets
I I
I |
I |
| I
I |
I [
L .
1 terminator terminator: The address section is all zeros.

Run-Time Library Overview CONFIDENTIAL

Extended Graphics Library 10-13

TMD Sort

TMD format modeling data allows the setting-up of random polygons. In realtime, when random polygon
types appear that create packets from TMD data and which are subsequently converted, the decode
routine is swapped out of the | cache and the processor is unable to keep up.

This is the reason for a TMD data high speed technique for ordering polygons. This technique is the TMD
sort.

The GsSortObject4() or GsSortObject5() packet-creating functions are faster if they use sorted TMD data.

TMD sort is carried out at the authoring level. TMDSORT.EXE is the conversion command. See Data
Conversion Ultilities for details on using this command.

Packet Creating Functions

GsSortObject3()
GsSortObject3() creates PMD format packets. It uses the object handler GsDOBJ3. For GsDOBJ3 to
handle PMD data, GsLinkObject3() must be called first to link the PMD data and the handler.
The PMD format combines the modeling data and preset packet.

The conversion of TMD to PMD takes place at the authoring level. TMD2PMD.EXE is the conversion tool.
See Data Conversion Utilities for details.

GsSortObject4()

GsSortObject4() is the most generic object calculation routine. It uses sorted TMD format data for greater
speed. The TMD data sort is carried out by the tmdsort.exe command. The object handler GsDOBJ2 is
used.

For GsDOBJ4 to handle the TMD data, GsLinkObject4() must be called first to link the TMD data and the
handler.

GsSortObject4() uses the preset local/screen matrix and the local/screen light matrix as a reference. The
object is local screen converted, sorted and allocated to the OT.

The local/screen matrix is set by GsSetlL.sMatrix(). Local/screen light matrix setting is performed by
GsSetLightMatrix().

The polygons allocated to OT are drawn by GsDrawOt(). This drawing function can return quickly, and
drawing may be done in the background.

GsSortObject5()

GsSortObject5() is a packet creation function that uses preset packets. It uses sorted TMD format data to
increase speed. GsSortObject5() uses the object handler GsDOBJ5. TMD data sort is carried out in the
tmdsort.exe command. For GsDOBJ5 to handle the TMD data, GsLinkObject5() must be called first to link
the TMD data and the handler.

GsSortObject5() uses GsPresetObject() to create preset packets. For GsSortObject5() to create a packet,
GsPresetObject() must be initialized once and a preset packet created.

CONFIDENTIAL Run-Time Library Overview

10-14 Extended Graphics Library

Packet Creation Function
The functionality of each packet creation function is shown below.

Table 10-2: Packet Creation Function Comparison Chart 1

A B C D E F G H I
GsSortObject3 GsDOBJ3 X X X X X X X 250K
GsSortObject4 GsDOBJ2 X (@] O X X (@] O ?
GsSortObject5 GsDOBJ5 X O O X X X O 220K
A. OBJTYPE - Object handler used
B. Material attenuation - (See attribute)
C. FOG - (See attribute)
D. Light source calculation off - (See attribute)
E. NearZ CLIP - (See attribute)
F. Back CLIP - (See attribute)
G. Semi-transparency rate - (See attribute)
H. Automatic division - (See attribute)
. Efficiency - 10x10 (Real measurement value of a flat triangle)
GsSortObject4 is more efficient than GsSortObject3 and less efficient than GsSortObject5
Table 10-3: Packet Creation Function Comparison Chart 2
Presort Preset Preshade WorkBase Tools
GsSortObject3 OK OK OK NG Tmd2pdm
GsSortObject4 OK NG OK/NG OK rsdlink, TMDSORT
GsSortObject5 OK OK OK/NG NG(normal) rsdlink, TMDSORT
OK(autodivision)

Packet Area

GsSortObject4() creates the packet and allocates it to the ordering table.
The packet creation area is set by the GsSetWorkBase() function.

Packets increase and decrease depending on the type and number of polygons (flat/gouraud, with/without
texture). Only a rough estimate can be made of how much area should be maintained. If the area of an
actual packet is smaller than the packet created, it will destroy the area behind the packet area.

GsGetWorkBase() is a function to return the area currently available for use by a packet. A program may
use this function to estimate the danger of overflow.

It is not necessary to use GsSetWorkBase() to maintain a new packet area when using GsSortObject5(),
because the packet area for the preset packet area may be reserved.

You must define a packet area with GsSetWorkBase() when using automatic division, because a packet
that has been divided and increased in size may use the packet area set aside by GsSetWorkBase().

Packet Double Buffer

Drawing is executed in the background, so the packets in a drawing cannot be destroyed. Consequently, it
is necessary to prepare two packet areas to make a double buffer.

Run-Time Library Overview CONFIDENTIAL

Extended Graphics Library 10-15

Drawing

Call the GsDrawOt() function to begin drawing. The drawing area is swapped each time GsSwapDispBuff()
is called. Drawing occurs in the background so sufficient time must be allowed to complete the operation.

During the drawing process images from the previous two frames that remain in the drawing area are
cleared. Call GsSortClear() to register the “screen-clear” Special Primitive to the OT before clearing the
screen. The cleared screen color may be specified as an RGB value in the arguments to the function.

Processing Flowchart

A typical flowchart of 3D processing required for each frame is shown below. See the sample program for
details.

Figure 10-3: Three-dimensional Processing Flowchart

Select the buffer to use

Clear OT

v
Perspective transformation/Z sort

(record command to OT)

\ 4

V-blanking sync

\ 4

Start OT drawing

Jump Tables

Purpose
GsSortObject5(),GsSortObject4() dispatches attributes, pre-set data, etc. and calls low-level functions.
There are 64 low-level functions, and a single application is unlikely to use all of them.

You don't need to link GsSortObjectbJ() and GsSortObject4J() with unnecessary low-level functions,
thereby making the code more compact.

In addition to decreasing code size, the GsSortObject...J functions allow the user to customize Libgs.
Support for non-standard actions, such as material attenuation, reflection-mapping, etc can be added to
the Libgs, by linking user defined functions in place of the library function.

These functions are compatible with GsSortObject5() and GsSortObject4(), which organize low-levell
functions as tables.

GsFCALL is the structure in which the function table is defined. The function table is organized according to
polygon type, whether or not division is performed, and the light-source calculation mode.

CONFIDENTIAL Run-Time Library Overview

10-16 Extended Graphics Library

Usage

The relevant functions are linked by entering the pointers of the appropriate low-level functions in each of
the elements. It is possible to avoid linking by not including the pointers and not making extern
declarations.

However, if a function that does not have a pointer is called, a BUS ERROR will be generated. To avoid
this, Libgte provides dummy (dmy...) functions. With these linked, if a call is made with an unanticipated
type, the appropriate dummy function will print its name to standard out.

The abbreviated example below, shows the use of GsSortObject5() with appropriate functions in all the
elements. In this example, GsSortObject5J() functions the same as GsSortObject5(). This example is
included in the comments

In the file libgs.h.

/* extern and hook only necessary functions */

extern _GsFCALL GsFCALLS; /* GsSort hject5J Func Table */
jt_init() /* Gs SortObject5J Hook Func */

{

PACKET *GsPrst F3NL(), *GsPrst F3LFG), *GsPrst F3L(), *GsPrst NF3() ;

PACKET *GsTMDdi VF3NL(), *GsTMDdi VF3LFQ), *GsTMDdi VF3L(), * GsTvDdi VNF3() ;
PACKET *GsPrst G3NL(), *GsPrst GBLFG), *GsPrst G3L(), *GsPr st NG3() ;

PACKET *GsTMDdi VG3NL(), *GsTMDdi VGBLFQ), *GsTMDdi v&L(), *GsTMDdi VNG3() ;
PACKET *GsPrst TF3NL(), *GsPrst TF3LFQE), *GsPrst TF3L(), *GsPrst TNF3() ;

PACKET *GsTMDdi VTF3NL(), * GsTMDdi VTF3LFQE), * GsTMDdi vTF3L() , * GsTMDdi VTNF3() ;
PACKET *GsPrst TG3NL(), *GsPrst TG3LFQE), *GsPrst TGL(), *GsPrst TNG3() ;

PACKET *GsTMDdi vVTG3NL(), *GsTMDdi vTGLFE), *GsTMDdi vTG3L(), *GsTMDdi VTNG3() ;
PACKET *GsPrst FANL(), *GsPrst FALFGE), *GsPrst FAL(), *GsPrst NF4() ;

PACKET *GsTMDdi VF4ANL(), * GsTMDdi VFALFQ() , * GsTMDdi VFAL(), * GsTMDdi VNF4() ;
PACKET *GsPrst GANL(), *GsPrst GALFQ(), *GsPrst GAL(), *GsPr st NG&4() ;

PACKET *GsTMDdi VGANL(), *GsTMDdi VEALFQ) , *GsTMDdi vAL() , *GsTMDdi VNGEA() ;
PACKET *GsPrst TFANL(), *GsPrst TFALFQ), *GsPr st TF4L(), *GsPr st TNF4() ;

PACKET *GsTMDdi VTF4NL(), *GsTMDdi VTFALFQ), *GsTMDdi vVTF4L(), *GsTMDdi VTNF4() ;
PACKET *GsPrst TGANL(), *GsPrst TGALFQE), *GsPrst TGAL(), *GsPrst TNGA() ;

PACKET *GsTMDdi VTGANL(), *GsTMDdi VTALFE), *GsTMDdi vTGAL() , *GsTMDdi VTNGA() ;
PACKET *GsPrst F3G\L(), *GsPrst F3GLFE), *GsPrst F3G.();

PACKET *GsPrst 3GNL(), *GsPrst FSALFGE), *GsPrst F3G.();

/* flat triangle */

Scratch Pad Usage Volume

In the Libgs the Scratch Pad address can be passed by argument to GsSortObject4, GsSortObject4d,
GsSortObject5 and GsSortObject5d. The scratch pad, a feature of the CPU, allows “high speed access” to
as much as 1k of data. It is used in polygon division to improve speed.

Run-Time Library Overview CONFIDENTIAL

Extended Graphics Library 10-17

Scratch Pad Consumption Status

The scratch pad consumption condition uses the following functions and attributes:

Table 10-4: State of Scratch Pad Consumption

ltem Description

Function name GsSortObject4()
GsSortObject4J()
GsSortObject5|()
GsSortObjectbJ()

attribute GsDIV1, GsDIV2, GsDIVS,

GsDIV4, GsDIV5

The scratch pad area is not used when automatic division is not carried out.

Scratch Pad Consumption Volume

The scratch pad consumption volume is as follows: (unit: byte)

Table 10-5: Scratch pad usage volume
GsDIV1 GsDIV2 GsDIV3 GsDIV4 GsDIV5
Triangular Polygon 184 272 360 448 536
Rectangular Polygon 260 400 540 680 820

Method for Common Use of Scratch Pad by the User Program and Library

The scratch pad base address given by the GsSortObject...() argument is shifted lower and the higher is
used in the user program. The scratch pad area used by the library is extended down in relation to the
address.

Mip-map Library

Libgs supports mip-mapping, which means switching the texture of a textured rectangular polygon
according to the polygon’s size. Using mip-mapping, it is easier to hit the texture cache, and drawing time
is shortened.

Usage Method

The GsSortObject4J() low-level functions which support mip-mapping are as follows:

Table 10-6: mip-map Low-level Function Group

Function Name Polygon Options

GsTMDfastTF4LM Flat textured quadrangle (light source calculation)

GsTMDfastTF4LFGM Flat textured quadrangle (light source
calculation+FOG)

GsTMDfastTF4NLM Flat textured quadrangle (no light source calculation)

GsTMDfastTNF4M Flat textured quadrangle (no light source calculation)

GsTMDfastTG4LM Gouraud textured quadrangle (light source calculation)

CONFIDENTIAL Run-Time Library Overview

10-18 Extended Graphics Library

Function Name

Polygon

Options

GsTMDfastTG4LFGM

GsTMDfastTGANLM
GsTMDfastTNG4M
GsTMDdivTF4LM

GsTMDdivTF4LFGM

GsTMDdivTF4NLM

GsTMDdivINF4M

GsTMDdivTG4LM

GsTMDdivTG4LFGM

GsTMDdivTG4NLM

GsTMDdivING4M

GsA4divTF4LM

GsA4divTF4LFGM

GsA4divTF4ANLM

GsA4divINF4M

GsA4divTG4LM

GsA4divTG4LFGM

GsA4divING4M

GsA4divING4M

Gouraud textured quadrangle

Gouraud textured quadrangle
Gouraud textured quadrangle
Flat textured quadrangle

Flat textured quadrangle
Flat textured quadrangle
Gouraud textured quadrangle
Gouraud textured quadrangle
Gouraud textured quadrangle
Gouraud textured quadrangle
Gouraud textured quadrangle
Flat textured quadrangle
Flat textured quadrangle
Flat textured quadrangle
Flat textured quadrangle
Gouraud textured quadrangle
Gouraud textured quadrangle
Gouraud textured quadrangle

Gouraud textured quadrangle

(light source
calculation+FOG)

(no light source calculation)
(no light source calculation)

(fixed division+ light source
calculation)

(fixed division-+light source
calculation+FOG)

(fixed division+no light
source calculation)

(fixed division+no light
source calculation)

(fixed division-+light source
calculation+FOG)
(fixed division-+light source
calculation+FOG)

(fixed division+no light
source calculation)

(fixed division+no light
source calculation)
(automatic division-+light
source calculation)

(automatic division-+light
source calculation+FOG)

(automatic division+no light
source calculation)
(automatic division+no light
source calculation)

(automatic division-+light
source calculation)

(automatic division+light
source calculation+FOG)
(automatic division+no light
source calculation)

(automatic division+no light
source calculation)

Run-Time Library Overview

CONFIDENTIAL

Texture Location

Extended Graphics Library

When using mip-mapping, textures should be positioned in the frame buffer as follows:

Figure 10-4: Texture Location

11

1/4

1/64

1/16

The texture size is in four stages: 1, 1/4. 1/16 and 1/64. The texture being used can be calculated by using
the external product value. The above four textures must be within the same texture page.

Polygon Vertex

The polygon vertex order must be as follows:

Figure 10-5: Polygon Vertex Order

0

CONFIDENTIAL

Run-Time Library Overview

10-19

10-20 Extended Graphics Library

Run-Time Library Overview CONFIDENTIAL

Chapter 11:
CD/Streaming Library

Table of Contents

Overview
Library and Header Files

CD-ROM Sectors
Audio Sectors
Data Sectors
ADPCM Sectors
Interleave

— -
— -
1

Addressing (Location Specification)

O b AARBR A DOM W

Tracks -
Absolute Sectors -
File System -
Transfer Rate 11-
Sector Buffer 11-
Sound Control 11-
Primitive Commands (Low Level Interface) 11-6
Command Arguments (Parameters) 11-7
Command Return Value (Result) 11-7
Command Overview 11-9
Command Synchronization 11-12
Command Execution Status 11-12
Command Synchronization Callbacks 11-13
CdControlF Interface 11-14
Data Read 11-14
Retry Read and No-Retry Read 11-14
Sector Ready Synchronization 11-14
Data Ready Synchronous Callback 11-15
Sector Buffer Transfer 11-15
Sector Transfer Synchronization 11-16
High-Level Interface 11-16
Data Read 11-16
Data Read Synchronization 11-16
ADPCM 11-17
Multichannel 11-17
Position-Confirmation Utility 11-17
TOC Read 11-18
Directory Read 11-18
Report Mode 11-18

CONFIDENTIAL Run-Time Library Overview

11-2 CD/Streaming Library

Event Services
Callback, Synchronous Function Overview

Special CD-ROM Notes
Notes on Disc Access
The Outer Three Minutes Problem
Notes on Using Low Level Function Groups
Operations Required for Swapping CDs
Warnings Regarding Changing the Motor Speed in the CD Subsystem
Noise during CD-DA/XA playback
Libcd Message Reference

Streaming Library Overview

Streaming

Synchronization Control

Ring Buffer

Ring Buffer Format

Memory Streaming

Interrupt Control of 24-Bit Movie Playback Time

Interrupt Functions Used

Run-Time Library Overview CONFIDENTIAL

11-19
11-19

11-19
11-19
11-21
11-22
11-25
11-26
11-27
11-28

11-33
11-34
11-34
11-34
11-34
11-35
11-35
11-36

CD/Streaming Library 11-3

Overview

The CD/Streaming Library (libcd) consists of two separate libraries:

* The CD-ROM Library, which provides functions for controlling the PlayStation built-in CD-ROM drive. It
provides CD sound control and other services.

* The Streaming Library, which is a group of functions for continuous reading of realtime data such as
movies, sounds or vertex data stored on high-capacity media. For an overview of the Streaming library,
see the Streaming Library Overview, page 11-33.

Library and Header Files
Every program accessing CD-ROM and streaming services must link with the file | i bed. |'i b.

Source code must include the header file | i bcd. h. When using the streaming library, | i bds. h may be
included instead.

CD-ROM Sectors

Digital data is recorded on a CD-ROM in a spiral, the same as with a CD audio disk. This digital data is
controlled by a processing unit called a sector. A digital data region lasting one second is divided into
75 sectors. Each sector is classified in one of the following sector types according to what it is used for.

Table 11-1: Sector Types

Sector type Stored data

Audio sector CD-DA audio data

ADPCM sector ADPCM compressed audio sector
Data sector User data sector

Audio Sectors

An audio sector records fs = 44.1 kHz digital stereo audio data (ordinary CD audio data). An audio sector
may be played by the CdIPlay command and cannot be read as user data.

Data Sectors

User data is recorded on a data sector. A data sector's effective user area varies somewhat according to
mode, but the standard is to use 2048 bytes (mode-1 format).

ADPCM Sectors

Strictly speaking, this indicates a sector called a realtime sector or mode-2 form-2 sector. ADPCM
compressed audio data is stored here, and can be played as audio in the same way as an audio sector.

CONFIDENTIAL Run-Time Library Overview

11-4 CD/Streaming Library

Interleave

On an ADPCM sector, ordinary audio data is recorded after being compressed by 1/4, relative to data on
an audio sector. ADPCM sectors need to be arranged on a disk every four sectors in order that the
CD-ROM may play ADPCM without having to seek each sector. This is known as interleaving. Interleaving
ADPCM sectors makes it possible to record other data on the remaining sectors, and makes it possible to
play audio while reading data.

When the disk is played at twice normal speed (double speed) the interleave separation must be every
8 sectors.

Addressing (Location Specification)

CD-ROM addressing (position setting) is done using track number, index number, minute, second, and
sector for compatibility with CD audio. That is, the position of CD-ROM data can be established as a track
number and index number when seen as audio data, or as a point which is x minutes x seconds x sectors
from the header of the disk.

There are 75 sectors in one second and 60 seconds in one minute. The starting sector begins at
00 minutes 02 seconds 00 sector.

Tracks

On a disk, a track signal is recorded at the header of each track, and a position table for track signals is
recorded at the header of the disk as the TOC (Table of Contents). The location for starting to play an audio
sector is detected using the TOC and track signals.

Absolute Sectors

A data sector is addressed by minute/second/sector, but to make position calculation easy, there is also a
method which sets it by counting the total number of sectors from the header (00 minutes 02 seconds

00 sector). This is called absolute sector setting. The absolute sector can easily be calculated from
minute/second/sector by using the CdintToPos() and CdPosTolInt() functions.

File System

This is a method for getting the absolute value of a disk through the 9660 file system, besides specifying
through low-level addressing. This method can only be used when the disk is recorded using the ISO-9660
file system format.

A CD-ROM is read-only, so the files on a disk can be arranged so that they all have continuous sector
regions. Therefore a file can be read simply by specifying that file's start location, and something equivalent
to an ordinary FAT(File Allocation Table) is not necessary. In the library, the function CdSearchFile(), which
searches for a file's starting location, is used as an index of file names.

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-5

Transfer Rate

A CD-ROM can rotate the disk at either normal speed or double speed. Normal speed has the same RPMs
as an ordinary CD player, and double speed is twice as fast. The faster the disk rotation the faster the disk
transfer speed.

CD-ROM transfer modes correspond to normal speed and double speed, and are 150KB/sec and
300KB/sec respectively. This means that in one second 75 sectors of data are read at normal speed and
150 sectors of data are read at double speed.

Sector Buffer

A CD-ROM's transfer speed is very slow compared to the host system's bus speed (132MB/sec), so the
CD-ROM system has an internal local memory for one sector of data, called the sector buffer, and data
from the CD-ROM is temporarily stored in the sector buffer before being collected and transferred. Data
transfer from the CD-ROM follows the procedure shown below.

Figure 11-1: Process of CD-ROM Transfer

CD-ROM

l CdIReadN()

Sector buffer

l CdGetSector()

Main memory

'

Each device name

However, this is an example of a low-level interface. A high-level interface, such as CdRead() that can read
data more easily is also provided.

Sound Control

The CD-ROM subsystem outputs two channels of audio signal: right (R) and left (L). Both CD audio and
ADPCM audio are handled this way. Audio signals are sent to the SPU, then added to and synthesized with
signals from an audio source inside the SPU and finally output as the composite sound. Four attenuators
control the CD-ROM's audio output. Attenuator control is set through the CdMix() function using the
CdIATV structure.

cd (L) --> ATVO --> SPU (L)
cd (L) --> ATVl --> SPU (R
cd (R --> ATV2 --> SPU (R
cd (R} --> ATV3 --> SPU (L)

CONFIDENTIAL Run-Time Library Overview

11-6 CD/Streaming Library

Primitive Commands (Low Level Interface)

The lowest level of operation for the CD-ROM is done by issuing direct commands to the CD-ROM
subsystem.

The CdControl() function is used to issue each command and takes the following arguments.

CdControl (
u_char com /* command code */
u_char *param /* command argunent set address */
u_char *result) /* conmmand return val ue storage address */

For example, when playing a CD from 1 minute 00 seconds using CdControl(), a CdIPlay primitive
command (code 0x03)is issued as follows:

#i ncl ude <libcd. h>

Cdl LOC pos;
u_char result[8];

pos. m nute 0x01; /* 1 mn */

pos.second = 0x00; /* 0 sec */
pos.sector = 0x00; /* O sector (void) */
pos.track = 0x00; /* void */

CdControl (Cdl Pl ay, &pos, result);

The details of par amand r esul t and the respective bit assignments are different for each command.
Low level commands defined by CdControl() functions are called primitives. Primitive commands and their
corresponding command codes are assigned as follows:

Table 11-2: Primitive Commands and Corresponding Codes

Symbol Code Type Details

CdINop Ox01 B NOP (No Operation)

CdISetloc 0x02 B Set seek packet location

CdIPlay 0x03 B CD-DA start play

CdlIForward Ox04 B Fast forward

CdiBackward 0x05 B Rewind

CdIReadN 0x06 B Data read start (with retry)
CdIStanby 0x07 N Wait with disk rotating

CdIStop 0x08 N Stop disk rotation

CdlPause 0x09 N Temporarily stop at current location
CdiMute 0x0b B CD-DA mute

CdIDemute Ox0c B Release mute

CdISetfilter Ox0d B Select play ADPCM sector
CdiSetmode 0xQe B Set basic mode

CdlIGetlocL 0x10 B Get logical location (data sector)
CdiGetlocP Ox11 B Get physical location (audio sector)
CdiGetparam OxOf B Get CD subsystem current mode
CdISeekL 0x15 N Logical seek (data sector seek)
CdISeekP Ox16 N Physical seek (audio sector seek)
CdIReadS Ox1b B Start data read (no retry)

B: Blocking; N: Non-Blocking operation

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-7

There are two types of primitive commands: blocking, which waits for processing to complete before
return, and non-blocking, which returns without waiting for completion. When the commands are not
queued , the next command is not issued, and after confirming that the previously issued command is
complete, issuance will be blocked.

Command Arguments (Parameters)

A primitive command needs a list of arguments called parameters, as shown below. Command arguments
are as follows:

Table 11-3: Primitive Command Arguments

Symbol Parameter Type Details

CdISetloc CdILOC ~ Start sector location
CdIReadN CdILOC * Start sector location
CdIReadS CdILOC ~* Start sector location
CdIPlay CdILOC * Start sector location
CdISetfilter CdIFILTER * Set play ADPCM sector
CdISetmode u_char * Set basic mode
CdIGetTD u_char * Track no (BCD)

Commands other than these do not need arguments. NULL (0) is set in the argument pointer in commands
that don't need arguments.

CdILOC specifies the disk location, and has the following structure.

struct {

u_char mnute; /* sector l|ocation(mnn)*/
u_char second; /* sector |ocation(sec)*/
u_char sector; /* sector |ocation(sector)*/
u_char track; /* reserved */

} CDLCC

Minute/second/sector are given in BCD format. In BCD, each digit of a decimal number is assigned a 4-bit
field. For example, decimal 60 is specified by a hexadecimal Ox60 notation.

The CdIFILTER structure is used to specify the multi-channel ADPCM play channel, and has the following
structure.

struct {

u_char file; [/* play file ID */
u_char chan; [/* play channel ID */
unsi gned short pad;

} Cdl FILTER;

Command Return Value (Result)

After a primitive command is executed, an 8-byte value is always returned. The meaning of the return value
varies according to the command, as shown below.

CONFIDENTIAL Run-Time Library Overview

11-8 CD/Streaming Library

Table 11-4: Primitive Command Return Values

Symbol Return Value and Stored Byte Position

0 1 2 3 4 5 6 7
CdINop Status
CdISetloc Status
CdIPlay Status
CdIForward Status
CdiBackward Status
CdIReadN Status
CdIStanby Status
CdIStop Status
CdlPause Status
CdiMute Status
CdIDemute Status
CdISetfilter Status
CdiSetmode Status
CdIGetparam Status Mode
CdIGetlocL Min Sec Sector Mode File Chan
CdIGetlocP Track Index Min Sec Frame Amin Asec Aframe
CdISeekL Status Btrack Etrack
CdISeekP Status Min Sec
CdIReadS Status

The buffer region that stores the return value needs 8 bytes even when the command's return value status

is only one byte.

Also, setting a the result parameter to NULL (0) suppresses the return value. In the following example, the
function returns without setting CdISeekL's return value.

Cdl LOC pos;

CdControl (Cdl SeekL, &pos,

Status Bit Assignments

0);

The first byte of the result of almost all commands indicates CD-ROM status. The bit assignments of the
status byte are as shown below. Use the command CdINop if you wish to obtain the CD-ROM status only.

Table 11-5: Bit Assignments of Status Byte

Symbol Code Details

CdIStatPlay 0x80 1: CD-DA playing

CdIStatSeek 0x40 1: seeking

CdIStatRead 0x20 1: reading data sector
CdIStatShellOpen 0x10 1: shell open*
CdIStatSeekError Ox04 1: error during seeking/reading
CdIStatStandby 0x02 1: motor rotating

CdIStatError 0x01 1: command issue error

*This flag is cleared by the CAINOP command. Therefore, in order to decide if the cover is
currently open or not and before checking this flag, the CAINOP command must be issued

at least once.

Run-Time Library Overview

CONFIDENTIAL

CD/Streaming Library 11-9

Command Overview

This section gives a brief description of each command and explains the command.

CdIiNop
Does nothing. Used for obtaining status.

CdiSetloc

Sets target position. This only sets the position; the actual operation is not performed. The target position
set by this function is used prior to executing CdIPlay, CdIReadN, CdIReadS, CdISeekP, or CdISeekL.

CdIPlay

After the CD-ROM head seeks the target position, CD-DA play begins. Target position is set by argument.
If the argument is set as NULL, the value set by the immediately preceding CdiSetloc or CdISeekP is used.

CdIReadS/CdIReadN

After the CD-ROM head seeks the target position, the data sector contents are read and transferred to the
local buffer. Target position is set by argument. If the argument is set as NULL, the value set by the
immediately preceding CdISetloc or CdISeekL is used.

CdIReadS does not retry if an error occurs. This is used mainly for realtime reading such as streaming play,
etc. CdIReadN can retry (max. 8 seconds) if a read error occurs. However, there is still the possibility of
failure even with the retry.

CdISeekL/CdISeekP

After the CD-ROM head seeks the target position, it waits in pause status. Unlike a hard disk, a CD-ROM
has a long seek time, so if the target address is known in advance, access can be sped up by moving the
head to the target position in advance.

CdISeekL does a logical seek of the data sector. The sector address has been recorded in the header of
the data sector, so it is possible to perform an accurate seek. This operation is called a logical seek. A
logical seek is only effective on a data sector.

On the other hand, a seek which uses a subcode (physical seek) is performed on an audio sector which
does not have a sector header. A physical seek is imprecise but is effective on every type of sector.

The relationship between the two types of seek is shown in the table below.

Table 11-6: The Operation of CdISeek/CdISeekP

Command Seek Method precision Sector used on
CdISeekL Logical High Anything but audio sectors
CdISeekP Physical Low All sectors

CdIForward/CdiBackward
Starts fast forwarding or rewinding an audio sector during play.

CdiStandby/CdIStop/CdIPause
CdIStandby waits with the spindle motor rotating.

CdIStop halts the spindle motor and returns the head to the home position. The next transition to seek or
read or play can be done faster in standby status than in stop status.

CdIPause temporarily halts read or play, and waits at the head's position in standby status.

CONFIDENTIAL Run-Time Library Overview

11-10 CD/Streaming Library

CdiMute/CdIiDemute
This mutes (no sound) or releases the mute in CD-DA or ADPCM play.

CdISetfilter

Sets play channel in multichannel ADPCM play. The channels which can be played are indexed by file
number and channel number. The default file number and channel number is (1,1).

CdiSetmode
Sets the CD-ROM's basic operation mode.

Mode setting is done by taking the logical OR of the following bits and setting the result byte using the
CdISetmode command. The current mode can be obtained using CdlGetParam.
Table 11-7: Mode Settings of CdISetmode

Symbol Code Details

CdIModeStream 0x100 Normal streaming

CdiModeStream2 0x120 SUB HEADER information includes

CdIModeSpeed 0x80 Transfer speed 0: Normal speed 1: Double speed
CdModeRT 0x40 ADPCM play 0: ADPCM OFF 1: ADPCM ON
CdIModeSizet 0x20 Sector size 0: 2048 byte 1: 2340byte
CdIModeSize0 0x10 Sector size 0: — 1: 2328byte
CdIModeSF 0x08 Subheader filter ~ 0: Off 1:On
CdiModeRept 0x04 Report mode 0: Off 1: On
CdiModeAP 0x02 Autopause 0: Off 1: On
CdiModeDA Ox01 CD-DA play 0: CD-DA off 1: CD-DAon

CdiGetparam
Gets the CD subsystem current mode.

CdIGetlocL

Gets current position of the data sector being read or the ADPCM being played. The table below shows the
meaning of the result code. CdiGetlocL does not work when an audio sector is playing.

Table 11-8: CdiGetlocL Parameters
Result byte no. Details
Minute (BCD)
Second (BCD)
Sector (BCD)
Status
File number (see CdISetfilter command)
Channel number (see CdISetfilter command)

o O N =+ O

Run-Time Library Overview CONFIDENTIAL

CdIGetLocP

CD/Streaming Library

Gets the physical address of the sector being read or played. The table below shows the obtainable
parameters. CdIGetlocP gets the subcode address, so it is effective on all sector types, including audio

sectors.

Table 11-9: CdIGetlocP

Result byte no.

Details

Track number (BCD)

Index number (BCD)

Track relative minute (BCD)
Track relative second (BCD)
Track relative sector (BCD)

Absolute minute (BCD)
Absolute second (BCD)
Absolute sector (BCD)

~N oo o0k~ 0N 2O

Track relative minute/second/sector indicates an offset value from that track's header location. Absolute

minute/second/sector specifies the location from the initial track.

CdIGetTN
Obtains number of TOC entries.

Table 11-10: CdIGetTN

Result Contents

0 Status

1 Initial track No. (BCD)
2 Final track No. (BCD)

CdIGetTD

Obtains the TOC entries information (min, sec) corresponding to the track number specified in the

parameters Please set the track No. in the BCD parameters.

Table 11-11: CdIGetTD

Result Contents
0 Status

1 TOC min
2 TOC sec

However, when the track No. is set at O:

min: total performance time (minutes)
sec: total performance time (seconds)

CONFIDENTIAL

Run-Time Library Overview

11-11

11-12 CD/Streaming Library

Command Synchronization

Primitive commands which take some time to process return without waiting for the actual completion of
processing. These commands are called non-blocking (asynchronous) commands.

Commands which wait for the completion of processing before returning are called blocking (synchronous)
commands.

Non-blocking commands continue processing in the background even after CdControl() returns. During this
time, the program can continue processing in parallel.

The actual completion of non-blocking command processing uses CdSync() or the callback function
(described later).

The return value (result) of CdControl() when a non-blocking command is actually issued is temporary, so it
must be determined by the return value of the last status, the function CdSync(), or by an argument passed
by the argument of a callback function.

To block all commands until complete, use CdControlB() instead of CdControl().

Command Execution Status

Primitive commands have the following processing status.

Table 11-12: Primitive Command Processing Status

Processing Status Details

CdINolntr Command being executed
CdIComplete Execution complete, waiting
CdIDiskError Error occurred

When a command is issued, the execution status changes from CdlComplete to CdINolIntr. When a
command ends normally and the next command can be received, the status shifts to CdlComplete. If an
error is detected during execution, the status becomes CdIDiskError.

Blocking commands and non-blocking commands can be defined based on the processing status when
the function returns.

A blocking command waits for CdlComplete/CdIDiskError status after a command is issued and then
returns, but a non-blocking command returns CdINolntr as-is.

Getting Command Execution Status

The execution status of non-blocking commands are obtained from the return value of the function
CdSync(). The format of CdSync() is as follows:

CdSync(
u_char node, /* mode 0: blocking; 1:non-blocking */
u_char *result) /* command's return val ue storage address */

It is possible to set blocking and non-blocking commands with CdSync() according to mode arguments.
Accordingly, 1 and 2 below give the same result.
Table 11-13: CdSync() Mode Argument Values and Contents

Mode Details

0 Do not return until execution status shifts to something other than CdINolIntr

1 Return immediately regardless of the execution status

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-13

Example A:

CdControl (Cdl SeekL, (u_char *)pos, 0);
CdSync(0, result);

Example B:
CdControl (Cdl SeekL, (u_char *)pos, 0);
while (CdSync(1, result) == Cdl Nolntr);

Furthermore, at the point when the execution status of the CdSync() return value (recall) is
CdIComplete/CdIDiskError, it is fixed for the first time.

If the processing status is CdINolIntr, the next command cannot be received. Command execution is not
queued, so a new command waits until the previous command completes and the execution status
becomes something other than CdINolntr. Therefore the following code produces the same result.

Example A:

CdControl (Cdl SeekP, (u_char *)pos, 0);
CdControl (Cdl Play, O, result);

Example B:

CdControl (Cdl SeekP, (u_char *)pos, 0);
CdSync(0, 0);
CdControl (Cdl Play, O, result);

In both examples a and b, the processing is blocked while seeking. This can be avoided by setting the
direct location and issuing CdIPlay or by starting CdIPlay within a callback function.

/* Bl ocked During Seek */
CdControl (Cdl SeekP, (u_char *)pos, 0);
CdControl (Cdl Play, O, result);

/* Not Bl ocked During Seek */
CdControl (Cdl Play, (u_char *)pos, result);

Command Synchronization Callbacks

A callback function is a function that may be called when the command execution status shifts from
CdINolIntr to CdlComplete/CdIDiskError. Callback registration uses the CdSyncCallback() function. The
following types of arguments are transferred in the callback function.

voi d cal | back(
u_char intr, /* execution status at that point in tine */
u_char *result) /* newest return value at that point intime */

An example of using a callback is provided below.

Example: Execute CdIPlay if CdISeek terminates

mai n() {
voi d cal | back();

Cdl LOC pos;

/* register callback function callback() */
CdSynccCal | back(cal | back);

/* issue comuand */
CdControl (Cdl SeekP, (u_char *)&pos, 0);

CONFIDENTIAL Run-Time Library Overview

11-14 CD/Streaming Library

/* the following function is called when the conmand ends */
voi d cal | back(u_char intr, u_char *result) {
if (intr == Cdl Conpl ete)
CdControl (Cdl Play, 0, 0);

CdControlF Interface

CdControl() is blocked until a report that the command has been issued is sent to the subsystem. Since
this blocked time is short when compared with the command execution time, it can usually be ignored.
However, depending on the application, it is possible that you may want to run the program without having
this time blocked. CdControlF() does not wait for command notification, it returns immediately after the
command has been issued. For this reason, it cannot be easily determined if the command has been
received or not. CdSync() must be issued and error processing must be done in polling.

Data Read

A CD-ROM is very slow compared to the transfer speed of the main bus. This is true even in double speed
mode when data the transfer rate is 300KB/sec. Consequently, the CD-ROM has an internal sector data
buffer, which merges and buffers the data from each sector.

When a data sector read command (CdIReadN/CdIReadS) is issued, the CD-ROM subsystem reads the
sector data and temporarily places the data in the sector buffer. The contents of the data in the sector
buffer are valid until overwritten by the next sector's data. Once data is valid in the sector buffer, it can be
transferred to main memory at high speed using the CdGetSector() function.

Retry Read and No-Retry Read

There are two types of data reading. One type retries at the sector unit if an error occurs during reading
(CdIReadN), and one type merely reports the error and does not retry (CdlIReadS).

Reading data using CdlReadN ensures that the read data is correct, because it retries when an error
occurs. Retrying means that the sector is read again, so this operation cannot be used at the same time
when playing ADPCM. Nor is it appropriate when you want to maintain a fixed transfer rate for data quality,
as in streaming. In this case, CdReadsS is used; it does not retry, even if errors occur.

Table 11-14: Retry Read/No-Retry Read

Read command Retry Error Detection
CdIReadN Yes Yes
CdIReadS No Yes

Sector Ready Synchronization

The CdReady() function detects whether or not data is ready in the sector buffer. CdReady() function format

is as follows:
CdReady (
u_char node, /* Mode 0: bl ocking; 1:non-blocking */
u_char *result) /* Most recent comand return val ue */

The CdReady() function returns the following sector buffer status.

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-15

Table 11-15: Sector Buffer Status

Processing Status Details

CdINolntr Being prepared
CdiDataReady Data preparation complete
CdIDiskError Error occurred

When data in the sector buffer is valid, the status shifts from CdINolIntr to CdiDataReady/CdIDiskError. If O
is set in the CdReady() mode argument, processing is blocked until the status shifts from CdINolntr. Also,
when the CdReady() function returns CdDataReady/CdDiskError, the status returns to CdNolntr.

Note that the CdReady() function reports the sector buffer status, so please be aware that it uses a lower-
level interface than the CdReadSync() function. CdReadSync() reports completion of CdRead(), and is
described later.

Data Ready Synchronous Callback

As with CdSyncCallback(), you may register a call back function when the sector buffer status shifts from
CdINolIntr to CdiDataReady/CdIDiskError. Callback registration uses the CdReadyCallback() function.

The callback function registered with CdReadyCallback() starts when 1 sector of data is ready. Please note
that the specifications for this differ from CdReadCallback(). CdReadCallback() is described later.

Sector Buffer Transfer

A sector buffer is constantly overwritten with new sector data. Therefore sector data needs to be
transferred to main memory before being overwritten. The CdGetSector() function is used to transfer sector
buffer data to main memory. In the case when sector buffer data is transferred to a direct frame buffer or
sound buffer, it is transferred to main memory once before it is re-transferred to each device.

The size of the sector buffer is 1 sector. Sector size varies according to CD-ROM mode, but 2KB is usually
used. In this case, the upper limit of the size of data size which can be transferred to main memory by one
CdGetSector() function is 2KB. Data can be transferred to different locations a number of times, but in
these cases, the total size of the transferred data must equal the sector size as well.

An example of reading n sectors of data from a CD-ROM follows. This example performs the transfer in the
foreground, but it is possible to do the transfer in the background using CdReadyCallback).

cd_read(
Cdl LCC *1| oc, /* target position */
unsi gned long *buf, /* read buffer */
i nt nsec) [* nunber of sectors */
{

u_char parani4];
/* set doubl e speed node */
parani 0] = Cdl ModeSpeed;
CdControl (Cdl Set node, param 0);
/[* issue retry command */
CdControl (Cdl ReadN, (u_char *)loc, 0);
/* transfer to main nmenory as soon data is ready */
while (nsec--) {
if (CdReady(0, 0) !'= Cdl Dat aReady)
return(-1);
CdGet Sect or (buf, 2048/ 4);
buf += 2048/ 4;

CONFIDENTIAL Run-Time Library Overview

11-16 CD/Streaming Library

Sector Transfer Synchronization
Data transfer from sector buffer to main memory is done in CdGetSector.

Since CdGetSector is a blocking function, the transfer of data is complete when it returns from the function.
Therefore, there is no need to monitor the completion of the data transfer asynchronously.

High-Level Interface

Data Read

Data on a CD-ROM can be read by combining the CdIReadN primitive command and the CdGetSector()
function, but the library also has the function CdRead(), which combines these and expands multiple
sectors in main memory.

CdRead(
int sectors, /* nunber of sectors read */
u_l ong *buf, /* main nmenory address */
u_char node) /* read node */

CdRead() uses CdReadyCallback() internally. So this callback cannot be used when using the CdRead()
function.

Data Read Synchronization

The CdRead() function works as a non-blocking function. The actual completion of CdRead() uses the
CdReadSync() function. When the CdReadSync() function operates in non-blocking mode, it returns the
number of unread sectors remaining.

The following example is a block-type CD-ROM read function.

int CdReadB(
Cdl LCC *l oc, /* target position */
u_long *buf, /* menory address */
int nsector) /* number of sectors read */

{ .
int cnt;
u_char parani4];
/* set doubl e speed node */
parani 0] = Cdl ModeSpeed;
CdControl (Cdl Set node, param 0);
/* set target position */
CdControl (Cdl Setloc, (u_char *)& oc, 0);
/* start read */
CdRead(nsector, buf, node);
/* monitor number of sectors remmining until read ends */
while ((cnt = CdReadSync(1, 0)) > 0);
return(cnt);
}

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-17

ADPCM

ADPCM (Adaptive Differential PCM) compresses audio data encoded as 16-bit straight PCM by 1/4. A
sector storing ADPCM data is called an ADPCM sector. In order to play an audio series, ADPCM sectors
are recorded on the disk at every fourth sector for normal speed playing and at every eighth sector for
double speed playing. (This kind of processing is called interleave)

Double speed ADPCM sector interleave is as shown below.
Figure 11-2: ADPCM Sector Interleave

012245678 9abecdedf
EEEEEEEEREEEEEEENNE

A: ADPCM sector
D: Data sector

Interleaving makes it possible to read data while playing ADPCM.

Multichannel

ADPCM sectors for another ADPCM channel can be interleaved with ADPCM data sectors. The figure
below shows an example of an array.

Figure 11-3: Example Multichannel Interleave

o1 2 34 5 68 78 9 abocdef
ALAL AL Al AL Al A A A Al Al AA A AA
L I I = R I =Y =Y) O O = e O B I

An: n-channel ADPCM data

This example shows 8 channels of ADPCM sectors (AO-A7) interleaved and recorded on a disk. In this
case, it is possible to switch between 8 channels of audio play without having to seek on the disk.

When playing this sort of multi-channel ADPCM tracks, the CdISetFilter command is used to decide which
channel to play. ADPCM tracks are confirmed by the CdIFILTER structure file members and channel
members.

In order to make the CdSetFilter command effective, CdiIModeSF must be set by the mode setting
command.

Position-Confirmation Ultility

Direct addressing of a CD-ROM is done by setting the minute, second, and sector in the CdILOC structure
and issuing the corresponding primitive command. The absolute position of each track and file on the
CD-ROM was determined in advance before the disk was created, so basically it isn't necessary to
dynamically search for a track or file's header position within the application.

However, for program development and debugging, a libcd utility is provided to dynamically search for the
target track or files header position when executing.

CONFIDENTIAL Run-Time Library Overview

11-18 CD/Streaming Library

TOC Read

As a CD player function, a CD-ROM is given a track index at the head of audio sectors and data sectors
when the disk is created. The track index is recorded in the disk's TOC region, and is obtained using the
CdGetToc() function.

TOC addressing is required basically to confirm an audio track play location. Therefore it has only second
resolution and is not precise.

Directory Read

If a disk is recorded in the ISO-9660 file system format, the disk's absolute value can be obtained using the
ISO-9660 format. Addressing using the 1ISO-9660 format provides more accurate locations than TOC
addressing, but the ISO-9660 file system needs to be installed and cannot be used in audio sectors.

The CdSearchFile() function is used in searching for file header locations using the 1ISO-9660 format.
CdSearchFile() searches for the file header location using the file's absolute path. The search result is
stored in the structure CdIFILE.

An example of reading a 9660 file from a disk is shown below.
Cdl FI LE fp;
CdSear chFi | e(& p0, "\\PSX\\ SAMPLE\\ RCUBE. TIM == 0)

CdControl (Cdl Setl oc, (u_char *)&fp.pos, 0);
CdRead((fp. si ze+2047)/ 2048, sectbuf, Cdl ModeSpee);

CdSearchFile () returns the following CdIFILE structure members.
typedef struct {

Cdl LCC pos; [* file position */

u_l ong si ze; [* file size */

char nane[16] ; [* file name(body) */
} cdl FILE;

Report Mode

This function periodically reports the play position when an audio sector is being played. This is called
report mode. If the CdlModeRept bit is set in this mode, the status shifts to CdDataReady status 10 times
during each second of CD audio play, and the report result is returned as the return value (result). The
following information is stored in the return value.

Table 11-16: Information Obtained in Report Mode
0 1 2 3 4 5 6 7
Status Track Index Amin Asec Aframe LevelH LevelL

Obtaining a report is done by reporting with the CdReady() function or by using CdReadyCallback() in the
background.

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-19

Event Services

At initialization, a default callback function is registered for each callback. These distribute the events shown
below.

Table 11-17: Event Services

Cause Descriptor details Event type
HwCdRom Processing complete EvSpCOMP
HwCdRom Data ready EvSpDR
HwCdRom Data end EvSpDE
HwCdRom Error occurred EvSpERROR

Therefore command completion or data read completion can be detected via the event handler. However,
at the moment that a new callback is set, the default callback is released, and event transmission halts.
Restoring the released default callback is left to the application. Here is an example:

Example: Callback Setting and Restoration
voi d (*ol d_cal I back) ();

/* recover previous callback pointer when setting call back */
ol d_cal | back = CdSyncCal | back(| ocal _cal | back);

/* restore call back */
CdSynccCal | back(ol d_cal | back) ;

Callback, Synchronous Function Overview

Table 11-18: Callback, Synchronous Functions

Called function Sync detect Callback Details

CdControl CdSync CdSyncCallback Issue command
CdControl CdReady CdReadyCallback Sector read
CdRead CdReadSync CdReadCallback Multiple sector read

Special CD-ROM Notes

Notes on Disc Access

A CD-ROM has to meet the CD-ROM XA specifications for playback to occur. Specifically, the CD-ROM's
data tracks must be positioned before the DA tracks. (The DA tracks are optional.) For example, it would be
incorrect if CD track 1 were a data track, tracks 2 and 3 were CD-DA tracks, and track 4 were a data track.
The tracks should be arranged so that tracks 1 and 4 are located together at the beginning as track 1, then
track 2 and the following tracks should be used for CD-DA data.

The auto pause function may not work properly if a disc has no gap between tracks or if the gaps are very
short. In this case, the disc may continue playing to the end. In order to prevent this from happening, the
gap between tracks must be at least two seconds long. As an example, to repeat one track as background
music for a game, there must either be a gap of two seconds or more with auto pause on, or the current

CONFIDENTIAL Run-Time Library Overview

11-20 CD/Streaming Library

position must be continuously polled so that when the end of the track is reached, the track will be
replayed from the beginning.

If there is a track jump within three minutes from the outer edge of the disc, it is possible for the head to fly
off the disc. In order to prevent this from happening, the tracks within three minutes from the outer edge
should not be accessed. Generally speaking, the outer three minutes of the disc should be burned with
NULLs. However, NULLs do not have to be recorded as long as the outer three minutes of the disc are not
accessed. For example, an ending movie of three minutes or more could be recorded in place of NULLSs.
As long as the ending movie is always played from the beginning, there will not be any access to the outer
three minutes. The mute off function will not work when a CD-DA track is played back immediately after a
data track. If this type of operation is desired, a mute off should be performed when the CD-DA track is
reached.

If report mode is left on during a data read, the pick-up position interrupt and the interrupt for starting data
transfers will be indistinguishable. Report mode should be turned on only when a CD-DA track is being
played. The following rules apply to the playing time sent when report mode is on. The absolute time from
the start of the disc and the relative time indicating the time elapsed within the track are sent one after the
other. In order to indicate whether the transmitted data is for absolute time or relative time, a '1' is set in the
highest bit of sector data. In report mode, the timing for sending reports is as follows.

The data read during ff, fr is limited, so everything that has been checked is sent. If the tens' column for the
absolute time is an even number, the absolute time is sent. If the tens' column for the absolute time is an
odd number, the relative time is sent. In this case the highest bit of the frame byte is set to '1'. Since
frames only run from 0 to 74, this bit can be set without any difficulty. Generally speaking, position data can
be read during normal playback. However, this data is also sent when the tens' column changes. The
relationship between the absolute time and the relative time is as described above. Levels are also sent,
which make up 15 bits out of the two bytes of data. The remaining one bit is used to indicate the L/R
channel.

The audio output may be different between cases when the CD-DA is accessed continuously and when
TOC data is retrieved and the data is accessed in absolute time. This is due to the fact that there is an
allowance for a lag between the data written in the TOC and the actual position. When data is accessed
continuously, the access destination is automatically calculated to the header where the index is 1. Thus,
the gap isn't played back.

The reset command performs the operations described below when the mode is set from the host and the
CD is paused at the beginning. The reset command can be used as often as necessary, but after a reset is
issued, the speed will be set to the standard setting.

Thus, if data were read at double speed, the disc speed would take some time to become stable since
there would be repeated transitions between standard and double speed settings. This can be avoided by
setting the desired mode (either by overwriting the mode or by looking at the current mode and correcting
it). This will allow faster data reads, as it will eliminate the time spent waiting for the disc to reach a stable
speed.

* Mode after resetting

» Dirive is in standard speed setting

* Realtime

* AD-PCM: off

e Number of bytes in data transfer: 2340

* Subhead filter: off

* Report mode: off

e Auto-pause: off

» CD-DA playback in CD-ROM mode: disable

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-21

» Clear position set by setloc command.
» Clear previous error status.

An error will be returned after a prescribed time if the disc is in bad condition and cannot be accessed.
Please note that there is a tendency to forget about error handling for this event since this problem
generally does not occur.

The following types of problems may also occur. It is possible for a user to be waiting for multiple sector
reads when the data happens to be difficult to read. In this case, some data would be read and an error
would occur. Then some more data would be read and another error would occur. Because of the large
number of retries, the time spent reading data would be much longer than expected and it would appear as
though the system was hung up.

Generally, FF and FR commands cannot be performed when data is being read. If these commands are
used in an environment such as a movie, some sort of workaround is needed for the user interface.

The "setloc, seekL, read" sequence can be used to read data, but it is also possible to use "setloc, read"
as well.

If the following commands come after a setloc, the location data that had been saved will be overwritten.
pl ay(pl ayN), readN, r eadS, seeklL, seekP, ff,fr, stop, reset, allreset

Also, the operation will be cancelled when the cover is opened. The following cannot be used: performing a
double read by specifying a position (with setloc), reading (readN or readS), then issuing another readN or
readS again. In this case, the operation of specifying a position (with setloc) and then reading (readN or
readS) must be repeated twice.

The CD-ROM decoder is equipped with 32Kbytes of local memory, but the user cannot use all areas of this
memory. Since the control software for the decoder does not support read-ahead in local memory, a data
read should start within 6.6 msec for double speed and 13.3 msec for standard speed after a data ready
interrupt. Otherwise, the data sent to the host may be updated and some data might be skipped. Ideally
two FIFO blocks should be used, with each block having a length of 2340 bytes. When one block is filled, a
switch will be made to the other FIFO.

There is some variation in access time even when the same interval is measured, and there is some
variation among individual machines. This should be taken into consideration so that read-ahead is
performed to absorb the variations.

If, while playing background music, multiple accesses need to be performed and switching time is required,
it may be efficient to use CD-ROM XA's multi-channel AD-PCM. Quick switching is not possible for CD-DA
since access is needed. Depending on the settings, it would also be possible to read data while playing
music.

The Outer Three Minutes Problem

In the current CD-ROM subsystem, seeking within three minutes of the outer edge of the CD-ROM may not
produce the correct results depending on the starting position of the seek. The problem may be prevented
in the following manner.

* Record dummy data on the outer three minutes (the last three minutes of data). Do not use the dummy
data.

* When using CD-DA for background music, make sure that the last track is three minutes or longer.
Then there would be no seeks to the outer three minutes as long as the track is not played from the
middle and the track is not repeated midway. This will allow the CD-ROM subsystem to operate
properly.

* If the outer three minutes have to be used as a data area, access the outer three minutes or more as a
single continuous file (e.g., use the area for an opening or ending movie).

CONFIDENTIAL Run-Time Library Overview

11-22 CD/Streaming Library

Notes on Using Low Level Function Groups

Error handling and callbacks are needed when performing read accesses on a CD-ROM using a
combination of the low-level functions for CdControl(). In these cases, please take note of the following
points:

Skipped Sectors

In double-speed mode, data is read from a CD-ROM at 150 sectors/sec. Therefore, one sector will be
skipped if the host system does not finish processing the read operation for the previous sector within
1/150 sec. This problem tends to occur especially when callbacks are used as they take a long time to
process. Therefore, for places where sector skipping is a possibility, CdlIModeSize1 should be called from
the application to read the sector header so that continuity of the sectors can be confirmed. The
CdISetmode command should also be used beforehand to set CdIModeSize1 (the mode for reading the
sector header).

parani 0] = Cdl ModeSpeed| Cdl MbdeSi zel;
CdCont r ol B(Cdl Set node, param 0);

Then, when using CdGetSector() to read data, the first 12 bytes (3 words) should be read. This contains the
sector address in CdILOC format. Skipped sectors can be avoided by checking to see if there is continuity
with the previously read sector address.

CdGet Sect or (buf, 3);

if (CdPosTol nt((Cdl LOC *)buf) !'= prev_pos+1)
return(-1);

el se
prev_pos++;

CdGet Sect or (buf p, 512);
bufp += 512;

Analysis of Callbacks

Whether or not sector data is ready can generally be determined by the callbacks in the CdReady() or
CdReadyCallback() functions. Please note that unlike other callbacks, the libcd callback uses two
parameters.

CdReadyCal | back(cal | back) ;

voi d cal | back(u_char intr, u_char *result)

{

Note that in this example, a call is made even if the read operation fails. The intr parameter can be used to
determine if the callback operation was successful or not. Read errors will not be properly caught if this
parameter is not checked. Please refer to the cd/tuto sample programs for details on how to do this. In the
result buffer, the return value of the last command issued is saved in an 8-byte array and the actual result
array (8 bytes) is saved. The data saved in the result buffer depends on the command that was issued.

Deleting Callbacks
When a callback completes it should be cleared quickly.

CdReadyCal | back(cal | back) ;
/* Operation corresponding to CdRead() */
CdReadyCal | back(0);

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library

In this example, if the clearing of the final callback is omitted, a CdlDataReady event could be generated
later due to other factors. This can result in a function callback() being activated at an unexpected time. In
cases where the function callback() rewrites main memory, data could be destroyed unpredictably resulting
in a bug.
Caution should also be exercised when a CdControl() is issued from a callback which has been set up by
CdSyncCallbacky).

CdSynccCal | back(cal | back) ;

voi d cal | back(u_char intr, u_char *result) {

CdCont rol (Cdl SeekL,);

}

In this example, a callback is activated after the completion of the CdISeekL issued from within the
callback(). Depending on the way the code is written, this could result in a recursive call to CdISeekL,
leading to an endless loop.

Watch Dog

At the same time that error handling is included to handle individual errors locally, time-out procedures and
monitoring procedures should be included that periodically check (i.e. every few Vsyncs) the state of the
CD-ROM subsystem to handle unavoidable errors. This kind of "watch dog" operation allows the system to
return to normal operating mode after a fixed interval regardless of the cause of the error.

Playing Back CD-DA/CD-XA

Playback of CD-DA/CD-XA can be halted by a seek error or by inappropriately opening the cover. The
status of the CD-ROM can be polled by periodically issuing the CdiINop command. The status of the
subsystem is stored in the first byte of the result buffer for CdiNop. If the CdiStatPlay bit in this byte is not
on, the appropriate track should be played back again.

Since logical accesses with CdISeekL and CdIGetlocL retrieve the position by reading the CD-ROM sector
header, these commands cannot be used for CD-DA tracks. Logical access can be performed for CD-XA
tracks, but this operation will fail if a seek is being performed. In particular, if a CdiGetlocL is issued, it is
necessary to check to see if a read (playback) is being performed.

VSyncCal | back(vcal | back) ;

static Cdl LOC pos;
vcal | back(voi d)

{ .
int ret;
[* if normal, polling */
if ((ret = CdReady(1, result)) == Cdl Dat aReady) {
if (CdLastCom() == Cdl Getl oclL)
pos = *(Cdl LOC *)result;
CdControl F(Cdl Getl ocL, 0);
}
[* if error, retry */
else if (ret == Cdl Di skError)
CdCont rol F(Cdl ReadS, (u_char *)&pos);
}

CONFIDENTIAL Run-Time Library Overview

11-23

11-24 CD/Streaming Library

In this example, the "watch dog" function may not operate properly. This is because CdIGetlocL may be
performed while a seek is taking place, resulting in a CdIDiskError. Thus, CdISeekL and CdIGetlocL would
be repeated indefinitely. The first three bytes of the result buffer for CdlGetlocL provide the sector position
in CAILOC format.

When a Data Read is in Progress

It is possible for a CdiDataReady event to be interrupted in the middle of a CD-ROM read for the same
reason as when an audio track is being played. This condition can be reliably detected by saving the time
stamp for when CdiDataReady was issued last and restarting all read operations if the time stamp has not
been updated for a fixed period of time (on the order of a few seconds).

voi d cal | back(u_char intr, u_char *result)

{
called_tine = VSync(-1);
}
mai n()
{
CdReadyCal | back(cal | back) ;
while (1) {
if (VSync(-1) > called_time + TINE_QUT)
br eak;
}
}

For sections where an endless loop waiting for a CdlDataReady may occur, there should be a way to exit
the loop after a fixed time period has elapsed.

Return Value for CdReadSync

When CdReadSync() is issued in non-block mode, the number of remaining unread sectors is returned.
Note that CdRead() performs a retry internally if a read error occurs, so the return value may not always
decrease consistently.

Error Correction in CdRead

Starting with ver 3.5, CdRead() internally checks the continuity of sector headers to prevent skipping
sectors during reads. Thus, a sector will not be read if the sector header information is incorrectly recorded.
If there are an extremely large number of errors in CdRead(), the recording format of the disc should be
checked.

High-Level Functions
High-level functions which perform a number of operations together are provided for some specific
functions. High-level functions should be used if speed is not an issue. Please refer to the "Function
Reference" for details.
* CdReadFile
Reads a file from the CD-ROM
— Format
int CdReadFile(char *file, u_long *addr, int nbyte)

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-25

— Parameters

file file name
addr destination main memory address
nbyte size of data to be read

* CdReadExec
Load executable file from CD-ROM
— Format
struct EXEC *CdReadExec(char *file)
— Parameter
file executable file name
 CdPlay
Plays back CD-DA track
— Format
int CdPlay(int mode, int *tracks, int offset)
— Parameters

mode playback mode
tracks array indicating the tracks to be played back
offset index of tracks to begin playing

Operations Required for Swapping CDs

For titles that require swapping CDs without resetting the main unit during the game, the following
operations should always be performed to prevent problems when the program reaches the market.

Operations to be Performed Before Swapping CDs

Required: Before swapping CDs (before outputting the "Replace CD" message), the CD subsystem should
be set to standard speed mode.

Optional: After setting standard speed mode, use CdIStop to stop rotation of the CD.

Sample code for setting standard speed mode is shown below.

com = 0;
CdControl B(Cdl Set node, &com result);

Detecting a Swapped CD

To see whether the CD has been replaced, the following two tests should be performed: (1) determine
whether the cover has been opened; and (2) determine the spindle rotation. Either test can be performed
using the CdINop command.

CdControl B(Cdl Nop, O, result); [/* char result[8]; */
1. The opening and closing of the cover is reflected in the CdIStatShellOpen bit of result[0]. The
CdIStatShellOpen bit detects an open cover, and has the following settings:
Cover is open: always 1
Cover is closed: 1, the first time this condition is detected, O for subsequent times
Thus, if this bit makes a transition from 1 to O, it can be assumed that the CD has been swapped.

2. Use the CdINop command and wait for bit 1 of result [O] (0x02) to change to 1.

Operations to be Performed Immediately after Swapping a CD

When the CD has been replaced and the cover has been closed, the CD subsystem begins reading the
TOC data. While this operation is being performed, commands other than CdINop and CdIGetTN should

CONFIDENTIAL Run-Time Library Overview

11-26 CD/Streaming Library

not be issued. The CdIGetTN command is used to determine when the TOC read operation has
completed. If this command executes successfully, the reading of TOC data will be finished and commands
can execute normally. The CdIGetTN command should be issued repeatedly until it is successful.

CdControl B(Cdl Get TN, 0, result); /[* char result][8]; */

Checking for PlayStation Disc

The logical access command CdIReadS/N should be issued to check to see that the mounted CD is a
PlayStation disc (black disc).

A command error is generated when a logical access is performed on a CD not recognized as a
PlayStation disc. Unlike the standard CdIDiskError, the command error generates a CdIDiskError while also
setting

bit O of result [0] (Ox01)
bit 6 of result [1] (0x40)

to 1.

If a command error has been detected, it will not be possible to perform a logical access. This can occur if
the wrong CD is mounted (such as a CD-DA) or if the CD has not been properly mounted. The only way to
recover from a command error is to open the cover and remount the CD, so a message indicating this
should be output, and the operation should be reissued.

When a game involves a logical access, e.g. loading data, immediately after a CD swap, the command can
also check to see that the mounted disc is a PlayStation disc. If there is no logical access command (such
as when a DA track is to be played back), there should always be a dummy read to check the disc.

If the mounted disc is a standard CD-ROM such as a CD-DA disc, the operations up to and including step
(8) will execute normally. Therefore, discs should always be checked to see that they are PlayStation discs.
The debugging station will recognize CD-Rs as well as standard CD-ROMs as PlayStation discs, but the
PlayStation will only recognize black discs as PlayStation discs. When using CdGetDiskType() to confirm
that the disk is a PlayStation disk, be aware that the operation mode set by CdlSetmode becomes
CdIModeSpeed after CdGetDiskType() is executed.

Other
* Steps (1) - () must always be performed in standard speed mode.

* The commands in steps (1) - (3) must always be issued using CdControlB to check that the command
has successfully completed. The example above has been simplified for the purpose of explanation,
but the results from each command should be checked with certainty.

* Relevant messages should be output during CD detection as needed.

Warnings Regarding Changing the Motor Speed in the CD Subsystem

In the PlayStation CD subsystem, it is necessary to maintain a fixed interval between switching speeds and
issuing certain commands. If this is not handled properly, the problems which are described below will
occur. This could result in a slew of complaints from customers, so programs should deal with these
possibilities very thoroughly.

Problem

When a command to move the CD head (CdISeekL/P, CdIReadS/N) is issued immediately after the CD
transfer speed is changed, the system will lose control of the head, resulting in strange sounds coming
from the CD.

This problem occurs because timing problems in the CD subsystem prevent proper control of the head
immediately after the transfer speed has changed. In the worst case scenario, a command to move the
head issued immediately after a speed change will result in the head running amok and then stopping when

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-27

it hits the mechanical stopper. When this happens, the CD subsystem will recover control of the head so
the program will not crash. Furthermore, when the head runs amok and hits the stopper, the safety
mechanism will operate so there is no danger of damage to the mechanism. However, the operation of the
safety mechanism will result in a strange sound, which could lead to complaints from customers.

The functions/commands relating to head movement are as follows:

CdRead(i nt sectors, u_long *buf, int node)
CdRead2(| ong node)

CdSear chFi |l e(Cdl FILE *fp, char *nane)

CdReadFi |l e(char *file, u_long *addr, int nbyte)
CdReadExec(char *file)

CdPl ay(i nt nmode, int *tracks, int offset)

Cdl SeekP
Cdl SeekL
Cdl ReadS
Cdl ReadN
Cdl Pl ay

The following measures should be taken if any of the above functions or commands are to be issued after a
change in transfer speed.

Countermeasure

If a command to move the CD head is to be issued after a change in CD transfer speed, always leave an
interval of at least three vsyncs.

Example:

com = Cdl MbdeSpeed;
CdControl (Cdl Set rode, &om 0);

/* Perform an operation that takes up at |east three vsyncs */
/* For exanple, VSync(3); */

retl
ret2

CdControl (Cdl SeekL, &pos, result);
CdControl (Cdl ReadN, &pos, result);

This will prevent situations where the head cannot be properly controlled. The same problem will occur if a
parameter to the functions below results in a change in transfer speed. Therefore, transfer speed should
not be changed using parameters for these functions. Instead, transfer speed should be changed manually
(with an interval of three vsyncs or more).

CdRead(i nt sectors, u_long *buf, int node)
CdRead2(| ong node)

Please note that the CD subsystem transfer speed will be set to standard speed after the following
functions are executed.

Cdl ni t (voi d)
CdReset (i nt node)

Noise during CD-DA/XA playback
When noise occurs during CD-DA/XA playback, check the following points:

CONFIDENTIAL Run-Time Library Overview

11-28 CD/Streaming Library

Is the converted data correct?

The sound tool assumes that data is 16-bit straight PCM data. Note that it is not compatible with AIFF.
When converting AIFF, since the header and footer information which appears at the beginning and end is
converted into sound, noise will be produced. The SoundDesignerll 2.5 sampling data format is 16-bit
straight PCM, so it can be used as is.

Does the volume decrease when playback is paused or a seek is performed?

Pausing a CD or performing a seek while sound is playing can cause clip noise to be produced. When
pausing a game where the CD also pauses, issue the CD command after performing a fade out.

Does the XA data contain a large number of high pass components?

With XA data, sound is compressed to 1/4, so noise is sometimes produced. The noise can become
particularly evident when there are a large number of high pass components. Perform a pre-process such
as installing a filter in advance to avoid this.

Libcd Message Reference

The error messages from libcd are described below. The levels here correspond to the modes in

CdSetDebug().

Table 11-19: Error levels
Level Output Conditions
0 Always output
1 Output if debug level is 1
2 Output if debug level is 2
3 Output if debug level is 3

CD timeout

Format:
CD timeout: [pos] ([status]) Sync=[sync], Ready=[ready]

Level:
0

Parameters:

[pos] - the position where the timeout occurred
[command] - the command that was issued last
[sync] - last CdSync status

[ready] - last CdReady status

Example:
CD timeout; CD_sync: (CdINop) Sync=Nolntr, Ready=Nolntr

Reason:
A callback was not generated from the CD-ROM subsystem within the expected time period.

CDROM:
unknown intr Unknown Interrupt from Subsystem

Format:

CDROM unknown intr ([num])

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-29

Level:
0

Parameters:
[num] - susystem status

Reason:

An undefined subsystem status was obtained.

Normal subsystem status is as follows: CdlDataReady 0x01
CdIComplete 0x02

CdlAcknowledge 0x03

CdIDataEnd 0x04

CdIDiskError 0x05

CD_init Initialization Data for Subsystem
Format:

CD_init: addr=[addr]

Level:
0

Parameters:
[addr] - start address of bios function table

Reason:
Occurs when the start address of the bios function is set by Cdinit()/CdReset().

Cdinit:
Init failed Initialization Failed

Format:
CdInit: Init failed

Level:
0

Parameters:
None

Reason:

Occurs in many cases when the CdIStatShellOpen flag is set. In these cases, subsequent attempts will be
successful.

DiskError

Format:
DiskError

Level:
0

Parameters:
None

CONFIDENTIAL Run-Time Library Overview

11-30 CD/Streaming Library

Reason:
A fatal error was generated.

DiskError A Fatal Error was Generated

Format:
DiskError

Level:
0

Parameters:
None

Reason:
The command could not be executed or data could not be properly read.

CdRead:

sector error Sector Addresses were not in Sequence
Format:
CdRead: sector error

Level:
0

Parameters:
None

Reason:

For some reason, the addresses in the sector data were not in sequence. In this case, assume that there
was a skipped sector during CdRead(), and retry from the first sector.

CdRead:

Shell open The Cover (Shell) was Opened During a Read.
Format:
CdRead: Shell open

Level:
0

Parameters:
None

Reason:

The cover was opened during execution of CdRead(). In this case, CdRead() will return to the first sector
and retry.

CdRead:
retry A CdRead Retry was Generated

Format:
CdRead: retry

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-31

Level:
0

Parameters:
None

Reason:
CdRead() returned to the first sector and a retry was performed.
No TOC found: An Audio Track was not Found.

Format:
No TOC found: please use CD-DA disc

Level:
0

Parameters:
None

Reason:
The CdPlay() function could not be executed since no audio track exists. This error is also generated when

no disc is mounted.
cbdataready: CdIiDataEnd Automatic Repeat Generated

Format:
cbdataready: CdlDataEnd (track=[track],time=[time])

Level:
0

Parameters:

[track] - number of track for which playback was completed
[time] - absolute time since the last ResetCallback() was called

Reason:
An automatic repeat was generated in the background during the execution of CdPlay().
track overflow

Format:
[track]: track overflow

Level:
0

Parameters:
[track] - the number of the track that was to be played next

Reason:
CdPlay() cannot begin playing track number [track]. The corresponding track does notexist on the disc

CONFIDENTIAL Run-Time Library Overview

11-32 CD/Streaming Library

com= An Error was Detected in the Issued Command

Format:
com=[command],code=([resultO]:[result1])

Level:
1

Parameters:

[command] - the last command issued
[resultO] - the first byte in the result buffer from CdSync
[result1] - the second byte in the result buffer from CdSync

no param Parameters of Primitive Command were not Set.

Format:
[command]: no param

Level:
1

Parameters:
[command] - the last command issued

CdSearchFile: Detailed Information on CdSearchFile

Format:

CdSearchFile: disc error
[name]: path level ((num]) error
[name]: dir was not found

Level:
1

Parameters:

[name] - filename to be searched
[num] - depth of path

Reason:
The root directory could not be read. The disc is not an ISO-9660 format disc.

CD_newmedia: Detailed Information Regarding Retrieval of Root Directory for CdSearchFile

Format:

CD_newmedia: Read error in cd_read(PVD)
CD_newmedia: Disc format error in cd_read(PVD)
CD_newmedia: Read error (PT:[pos]
CD_newmedia: searching dir..\n"));
[MinQ]:[secO]:[sector0]
[min1]:[sec1]:[sector]

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-33

Parameters:

[pos] - position of root directory

min(n)] - position of directory (in minutes)
[sec(n)] - position of directory (in seconds)
[sector(n)] - position of directory (sector)

Reasons:

PVD sector cannot be read.

Format of PVD sector is not correct.

Format of sector is not correct.

The root directory cannot be read.

If the root directory can be read, its contents are output.

CD_cachefile: Display Contents of Current Directory of CdSearchFile

Format:

CD_cachefile: searching...
(IminQ]:[secO]:[sector0])
(Imin1]:[sec1]:[sector])

CD_cacheéfile: [num] files found

Level:
2

Parameters:

[min(n)] - position of files in current directory (in minutes)
[sec(n)] - position of files in current directory (in seconds)
[sector(n)] - position of files in current directory (sector)
[num] - number of files in current directory number

Streaming Library Overview

The streaming library is a group of functions for getting realtime data such as movies, sounds or vertex data
stored on high-capacity media in units called frames. A frame consists of one or more sectors, the smallest
unit of data on a CD-ROM.

High-capacity media at the present is assumed to be CD-ROM, semiconductor memory, or a hard disk;
the current version supports CD-ROM.

A single frame of data obtained using the streaming library is guaranteed to be complete, have no
omissions, and be contiguous.

The library has the following functions.

* Synchronous processing of CD-ROM and video

» CD-ROM data error processing

» Continuous data reading

* Suspend processing

» Complete processing

The streaming library is responsible for accessing the CD-ROM and putting the data needed, in units of

time, into memory. The user program handles displaying this data on the screen and outputing it as sound
and so forth.

CONFIDENTIAL Run-Time Library Overview

11-34 CD/Streaming Library

Streaming

Streaming is the process of continuously reading data from CD-ROM and transferring it to main memory. It
is used for realtime processing of data, such as playing video or 3D vertex animation. The process of
continuously reading CD-ROM sectors makes full use of the CD-ROM transfer rate.

Streaming combines data processing units (1 frame of compressed image data, etc.) consisting of multiple
sectors in main memory, and transfers the header pointer to the application.

Synchronization Control

When continuously reading and processing sector data, one frame must be processed in less than the time
it takes to read one frame from the CD-ROM. If this does not happen, the processing cannot keep up,
CD-ROM data accumulates, and the buffer overflows.

However, frame processing of is not synchronized with CD-ROM reading, so processing must complete in
less time it takes to read the frame. This makes synchronization difficult.

The streaming library solves the problem of synchronization. If processing of one frame exceeds the time it
takes to read one frame, the read data is discarded in increments of frames. This mechanism ensures that
data read from the CD-ROM has integrity at the frame unit level, and that data is always read, processed
and synchronized at high speed. This function is implemented by using a ring buffer to store CD-ROM
data.

However, depending on the application there will be times where you will definitely not want to discard the
frame. At such times, a means for making time adjustments by returning the head is provided. Since
synchronization is accompanied by head access in this method, XA audio and streaming cannot be used at
the same time. Refer to StGetBackLoc and StRingStatus.

Ring Buffer

The streaming library has a ring buffer that is used to store and lock data.

The ring buffer size is optional in units of sectors, requiring that the main program ensure the integrity of this
area. This is reported by StSetRing(). When the programmer has finished processing that data, he or she
needs to release the lock. Releasing the lock is done with StFreeRing().

When the ring buffer fills up with locked data, the library discards data in units of frames. When the lock is
released, data is read.

The library automatically adjusts the end of the ring buffer address so that it does not hit in the middle of
one frame of data.

Ring Buffer Format

The ring buffer region is broadly divided into two regions, each of which is a ring buffer. The upper part is a
header region for addresses, and the lower part is the data region.

The header region is a ring buffer with 8 words (32 bytes) in 1 sector. The data region is a ring buffer with
504 words (2016 bytes) in 1 sector.

For example, if the ring buffer size is 4, the following data reading occurs.

Run-Time Library Overview CONFIDENTIAL

CD/Streaming Library 11-35

Figure 11-4: Ring Buffer Size 4 Example

SECTOR 0 HEADER T
SECTOR 1 HEADER
SECTOR 2 HEADER

SECTOR 3 HEADER \j
i

32-byte sectors

SECTOR 0 USER DATA

SECTOR 1 USER DATA

2016-byte sectors

SECTOR 2 USER DATA

SECTOR 3 USER DATA

\j

When data is read from a CD-ROM, that sector is locked.

When StGetNext() is called, the frame starting address is returned when a frame's worth of data is
available. When the programmer finishes processing this frame of data, the frame region is released using
StFreeRing(). New data may be read from the CD-ROM to the released region.

Memory Streaming

If one sequence is rather large going into the ring buffer region and reading stops before the ring buffer
overflows, the sequence may be repeated not from the CD-ROM but by streaming from memory. (There is
a limit to the number of times a sequence may be repeated.)

If the end_frame argument in StSetStream() and StSetEmulate() is set as 0, reading from the CD-ROM may
be automatically halted at the ring buffer cutoff.

The processing described above makes it possible to implement memory streaming without ring buffer
looping.

Interrupt Control of 24-Bit Movie Playback Time

The function StCdinterrupt() performs interrupt control during streaming. It is called automatically by
interrupts from the CD-ROM, and usually does not need to be executed.

CONFIDENTIAL Run-Time Library Overview

11-36 CD/Streaming Library

However, StCdInterrupt() does relatively large 2K-byte DMA transfer from CD-ROM to main memory, so it
occupies the bus for a relatively long time. A method for controlling the calling of this function is provided.
This function is used when playing RGB 24-bit movies.

If bit 1 of 24-bit mode is set ON in the loc mode arguments in StSetStream() and StSetEmulate(),
StCdinterrupt() is not called automatically. Instead, a flag called StCdintrFlag is set. Timing can be
controlled by the programmer by watching for this flag and calling this function at an appropriate time.
StCdintrFlag is defined in the library as an unsigned long global variable.

/* STCdIntrFl ag usage exanpl e*/
extern unsigned | ong St Cdl nt r Fl ag;

if (StCdintrFlag == 1) {
StCdinterrupt();
StcdintrFlag = 0;

Interrupt Functions Used

The streaming library uses the following interrupt functions.

Table 11-20: Interrupt functions

Libcd function name Libds function name Details

CdDataCallback DsDataCallback Sector data transfer completion
callback

CdReadyCallback DsReadyCallback Sector data ready callback

Run-Time Library Overview CONFIDENTIAL

Chapter 12:
Extended CD-ROM Library

Table of Contents

Overview 12-3
Library and Header Files 12-3
Description of libds 12-3
Description 12-3
Relationship with libcd 12-3
Streaming Functions 12-4
libapi Functions 12-4
Differences from libcd 12-4
Primitive Commands 12-4
Structures 12-5
Functions 12-5
Processing Speed 12-5
Compatible Functions 12-5
Initialization and Exit 12-5
System Initialization 12-5
Resetting after Initialization 12-6
Exiting the System 12-6
Caution 12-6
The Command Queue 12-6
Issuing Commands 12-7
Confirming Completion of Command 12-7
Checking Command Queue Status 12-7
Timing 12-8
Error Operations 12-8
Callbacks 12-8
Multiple Operations 12-9
Command Packets 12-9
Issuing Command Packets 12-9
Checking for Completion 12-10
Timing 12-10
Error Operations 12-10
The Simple Callback 12-10
Features of the Simple Callback 12-10
Recovery Behavior 12-11
Description of Callback Function 12-11
Exiting the System 12-11
System Operation when Opening and Closing the CD Cover 12-12
Caution 12-12
Other 12-13
Opening and Closing the CD Cover 12-13

CONFIDENTIAL Run-Time Library Overview

12-2 Extended CD-ROM Library

Notes Regarding Swapping of CDs

Transfer Speed Change

Pre-seeking

Performing a Continuous Read to Access Multiple Files
The Outer Three Minutes Problem

Notes Regarding DslPlay, DsIReadN, DsIReadS
Completion of Data Reads

Noise during CD-DA/XA playback

Run-Time Library Overview CONFIDENTIAL

12-13
12-14
12-14
12-14
12-14
12-15
12-16
12-17

Extended CD-ROM Library

Overview

The extended CD-ROM library (libds) provides a new interface while using the kernel from the existing
CD-ROM library (libcd). Libds implements a command queue which accommodates speed differences
between the main CPU and the CD subsystem. libds also performs PlayStation-specific processing, such
as operations involving the opening or closing of the CD cover.

This chapter assumes familiarity with liocd and mainly presents differences from libcd.

Library and Header Files

The library file for libds is | i bds. | i b; programs that use services from libds must link with this library.
Since libds uses libcd to control the CD subsystem, | i bed. |i b (version 4.0 or higher) must be linked as
well. You must also link version 4.0 or higher of I i betc. | i b.

Source code must include the header file | i bds. h.

Description of libds

Description

Libds is a new interface implemented on top of the libcd kernel system. An independent kernel system is
installed over libcd's control routines so that the CD subsystem can perform operations such as command
gueue control and operations when the CD cover is opened. Features equivalent to those provided by libcd
are provided, programs can be updated easily.

Figure 12-1: CD libraries

libcd.lib ' libds.lib

Interface Interface

Kernel

Relationship with libcd

The kernel system and the command queue used by libds operate exclusively from the libcd functions.
Consequently, calling a libcd function while libds is being used will destroy the kernel system and the
command queue. Thus, when libds is being used, libcd functions should not be used (functions beginning
with "Cd", including Cdinit()).

CONFIDENTIAL Run-Time Library Overview

12-3

12-4 Extended CD-ROM Library

Streaming Functions

Libds cannot be used simultaneously with libcd, but streaming should be performed normally using the
St¥() functions. The St*() functions are part of libcd.lib, but they do not affect libds operations since they do
not control the CD subsystem. When initiating streaming, the functions and commands from libds should
be used (such as DsRead2() and the DslReadS command).

libapi Functions

The functions in libapi used for CD control (such as 96_init, LoadExec, Load) should not be used when
libds is running. If these functions need to be used, they should be used after libds is finished.

Differences from libcd

Primitive Commands

The primitive commands perform the same operations as libcd. The command codes are redefined in
libds.h, with the initial "CdI" in the symbols being replaced by "Dsl".

Table 12-1: Primitive Commands

Symbol Code Type Details

DsINop 0x01 B NOP (No Operation)

DslSetloc 0x02 B Set target location for seek
DslPlay 0x03 B Begin playing CD-DA

DslForward 0x04 B Fast-forward

DslBackward 0x05 B Rewind

DsIReadN 0x06 B Start reading data (with retry)
DsIStandby 0x07 N Wait while disk continues spinning
DslIStop 0x08 N Stop disk rotation

DslPause 0x09 N Pause at current location
DsIMute 0x0b B CD-DA mute

DslDemute 0x0c B Release mute

DslSetfilter 0x0d B Select ADPCM sector to play
DsISetmode 0x0e B Set basic mode

DslGetparam OxOf B Get final status, operation mode
DslGetlocL 0x10 B Get logical location (data sector)
DslGetlocP Ox11 B Get physical location (audio sector)
DslGetTN 0x13 B Get number of TOC entries
DslGetTD Ox14 B Get TOC

DslSeekL 0x15 N Logical seek (Data sector seek)
DsISeekP Ox16 N Physical seek (Audio sector seek)
DsIReadS Ox1b B Start reading data (no retries)

Run-Time Library Overview

CONFIDENTIAL

Extended CD-ROM Library 12-5

Structures

For each structure used in libcd, libds contains an equivalent structure. The initial "Cdl" in the symbols for
the structures are replaced with "Dsl".

Table 12-2: Structures

Symbol Symbol under libcd Details

DslATV CdIATV Audio attenuator
DsIFILE CdIFILE 9660 file descriptor
DsIFILTER CdIFILTER ADPCM channel
DsILOC CdILOC CD-ROM location

Functions

Libds contains functions equivalent to those in libcd. The initial "Cd" in the symbols are replaced with "Ds".
However, some functions use different arguments or involve different timings. Please refer to the reference
material for details on specific functions.

Processing Speed

Libds uses a command queue to manage primitive commands. Thus, precise processing speeds (timing)
will vary from those in libcd.

In libcd, if a primitive command is issued while a previous command is still executing, the function that
issued the new command (such as CdControl()) blocks and waits for the previous command to finish. Once
the command has completed, the function issues the new command.

With libds, however, if a command is issued when another command is executing, the new command is
entered into a command queue and the function that issued that command will exit at that point. When the
previous command completes, and at every VSync, an evaluation is made whether a queued command
can be executed. If the command can be executed, it is sent to the CD subsystem.

The advantage of this method is that CPU processing is not blocked when a command is issued,
regardless of the state of the CD subsystem. Also, if multiple commands are issued simultaneously,
commands can be issued (entered into the queue) without waiting for the other commands to finish.

Compatible Functions

The execution of the primitive commands in libds are all performed as non-blocking operations. However,
libds also provides functions that correspond to CdControl (CdControlB) from libcd.

Initialization and Exit

System Initialization
When libds is used, Dslnit() must be executed at the start of the program.
int Dslnit(void);

Once Dslnit() has executed, it will not be possible to control the CD subsystem through non-libds
environments (such as libcd or libapi). DsInit() internally initializes libcd, so Cdinit() does not need to be
called even if the streaming library (the St*() functions) will be used.

CONFIDENTIAL Run-Time Library Overview

12-6 Extended CD-ROM Library

Resetting after Initialization

After Dslnit() is used to initialize the system, it should not be called again as results may be unpredictable. If
the system needs to be reset during normal operations, DsFlush() should be used instead.

voi d DsFlush(void);

DsFlush() flushes the CD subsystem and clears the command queue (to be described later). If for some
reason the system needs to be restored to its original state, DsReset() should be used.

int DsReset(void);

Using DsReset() will clear the callback functions set by the program, so these functions should be
reinstated after resetting.

Exiting the System

When activating a child process (.EXE), the libds system should be exited. Use DsClose() to exit the system.
voi d DsC ose(void);

After the child process is finished, DslInit() can be called if the system needs to be used again.

Caution

DsFlush(), DsReset() and DsClose() will not stop data read (playback)operations. Data reads (playback)
must be explicitly halted from the program by issuing a DslPause. DslPause should be used with DsFlush(),
DsReset() and DsClose().

For example,

whil e(DsControl B(Dsl Pause, 0, 0) == 0);
DsCl ose();

Incorrect operation may result if after exiting the system, LoadExec or a similar operation is performed
during a data read (playback).

The Command Queue

The command queue is a facility that monitors the state of the CD subsystem and controls the issuing and
completion of primitive commands.

When a command is issued it is added to the queue. The command is sent to the CD subsystem when the
subsystem is ready to receive the command.

Another function of the command queue is to automatically perform those processes necessary for the
operation of the CD subsystem. For example, operations that are performed when the cover is opened are
handled automatically by the system. While these operations are being performed, commands cannot be
sent to the CD subsystem, but they can be entered into the queue and executed once the operations have
completed.

Run-Time Library Overview CONFIDENTIAL

Extended CD-ROM Library 12-7

Issuing Commands

The DsCommand() function is used to send primitive commands to the command queue.
i nt DsCommand(

u_char com /* command code */

u_char* param /* command paraneter (4 bytes) */

Dsl CB func, /* pointer to callback function */

int count) [* retry count (-1: unlimited retries) */

The third argument is a pointer to the callback function which will be invoked when the command has
completed. Callback functions can be set individually for each command, and they will be called only when
the corresponding command has completed.

When a command is successfully issued (entered into the queue), a command ID (>0) is set as the return
value of DsCommand(). This command ID can subsequently be used to get the execution status or result of
command execution.

A O will be returned if the command queue is full.

Confirming Completion of Command

In order to see if a primitive command from the command queue has finished executing, a callback function
can be specified when the command is issued, or the DsSync() function can be used.

int DsSync(
int id, /* command id */
u_char* result) /* return value of command (8 bytes) */

DsSync() returns the execution status of the specified command at the point when it is called.

Table 12-3: Confirming Completion of Command

Symbol Meaning

DslComplete Command exited normally

DslDiskError Command returned an error

DsINolntr Command has not yet been executed
DsINoResult Command has exited but no results are available.

When execution has completed, the return value is stored in
‘result' for (DslComplete, DsIDiskError).

The system can hold multiple execution results and the results from two previous commands can be
retrieved. However, older execution results are overwritten, so a DsSync() for a command that is too old will
return a DsINoResult. The number of execution results saved by the system is defined in the macro
constant DsIMaxRESULTS.

Checking Command Queue Status

The DsQueuelen() function can be used to retrieve the number of commands currently stored in the
command queue.

int DsQueuelLen(void);

DsQueuelen() returns the number of commands stored in the current queue. The command count includes
commands that are currently being executed. The maximum number of commands that can be entered in
the queue is defined by macro constant DsIMaxCOMMANDS. The maximum number of commands may
be changed with version upgrades, so please use references to the macro constant.

CONFIDENTIAL Run-Time Library Overview

12-8 Extended CD-ROM Library

DsSystemStatus() is used to retrieve the status of the system.
int DsSystenttatus(void);

DsSystemStatus() returns the current status of the system. The return values are as follows.

Dsl| Ready Ready to execute comrand
Dsl Busy Conmand bei ng executed or conmand cannot be executed
Dsl NoCD CD is not set

DslReady is returned when the CD subsystem is in the normal state and no command is being executed. If
a command is entered in the queue, the operation is begun immediately. In cases where timing is
important, the program should double-check to confirm that the command count in the queue is O.

DslBusy is returned when a command is currently being executed or when a command cannot be
executed for some reason. Examples of cases when commands cannot be executed include when
operations performed in response to the opening or closing of the cover are taking place, or when
operations cannot be performed for a fixed time due to a change in CD speed. During this time, commands
are added to the command queue and will be sent to the CD subsystem once the status changes.

DsINoCD is returned when there is no CD set in the drive. After operations are performed in response to
the opening or closing of the cover, the status changes to DsINoCD if no CD is detected.

Timing
If execution is possible, a primitive command issued by DsCommand() is sent immediately to the CD
subsystem. When execution is not possible, the command is added to the queue such as when a previous
command has not completed. When the previous command is done, the new command will be issued
(from a sync callback--sync chain).

When operations are blocked, such as when the cover has been opened or closed, the sync chain is
broken. In such cases, the queue is polled with the VSync interrupt.

Error Operations

If an error is generated during execution of a command, the command is re-issued (retry). The number of
times the instruction is retried is specified by the fourth argument of DsCommand() (count). Retries will be
performed count times. The command will not be retried if count is equal to O.

If the command is not successful after the specified number of retries, the command returns an error and is
removed from the queue.

When count is equal to -1, retries will be performed until the command is successful (unlimited retries).

When the CD cover is opened, all commands entered in the queue are cancelled. If callback functions are
specified for the command, the callback functions are called in the order in which they were queued.

Callbacks

Callback functions are invoked when a primitive command has completed. Callback functions can be
specified individually for each command or one function can be specified as a common callback function.

When a callback function is specified for a command, the function is only called when that particular
command has completed. Once the callback function has been called, the callback setting for that
command is automatically removed.

When a common callback is set, the function will be called when all of the commands have completed or
when an error is generated due to non-synchronization (such as when the CD cover is opened).

Run-Time Library Overview CONFIDENTIAL

Extended CD-ROM Library 12-9

The callback function called from each command is described in the following format:
void function(u_char intr, u_char* result);

intr and result refer to the same interrupt information as normal data ready callback functions. Usually this is
Intr ==DslComplete (Command success). Refer to the section titled “Simple Callbacks” for a description on
cases when a callback function is called in intr==DsIDiskError.

Multiple Operations

Multiple commands can be entered together in the command queue, but this does not mean that multiple
operations (data reads or playback operations) can be performed simultaneously. The data read
commands (DslReadN, DsIReadS) and playback command (DslIPlay) are considered complete the moment
these commands are accepted by the CD subsystem. Once accepted, these commands are removed from
the queue. If another command is available, it will be issued to the CD subsystem.

Depending on this newly issued command, a data read (playback) operation that is in progress may be
halted and the data read operation may not be able to obtain its requested data.

Consequently, multiple data read (playback) operations cannot be entered in the command queue
simultaneously.

When multiple data read (playback) operations need to be performed, the program should issue a single
command corresponding to the first operation, obtain the desired data (i.e., perform playback over an
appropriate interval), then issue the next command to the queue.

Command Packets

Primitive commands can be issued to the command queue by means of a command packet: a series of
commands that are issued together. For performing a CD data read (CD-DA playback), the command
packet consists of four primitive commands issued in the following sequence:

» Pause (to end the previous operation)

» Set the operating mode

* Specify the start position

* Perform the read

These four commands can be entered into the queue with a single function call.

Stable CD access can be achieved by issuing commands in the form of a command packet. The operating
mode and the start position can be specified with each command packet, so the operation will not be
affected by the previous state of the CD subsystem. Also, if an error occurs, the operation is retried from
the start of the command packet. This makes it more likely that the retry will be successful.

Issuing Command Packets

DsPacket() is used to issue a command packet.
i nt DsPacket (

u_char node, /* Qperating node */

Dsl LOC* pos, /* Start position */

u_char com /* Read (playback, seek) conmand */

Dsl CB cbsync, /* pointer to callback function to be called
when command conpl etes */

int count) [* retry count (-1: unlimited retries) */

CONFIDENTIAL Run-Time Library Overview

12-10 Extended CD-ROM Library

When this function is executed, the following four commands are entered into the queue.

* DslPause - 0

» DsISetmode - mode

» DslISetloc - pos

* The command specified by com - 0

The commands DslPlay, DsIReadN, and DslReadS can be specified for com. If a seek command

(DsISeekL, DslSeekP) is specified for com, everything up to the completion of the seek operation can be
considered part of the packet. This allows pre-seeking.

Checking for Completion

To check to see if a command packet has finished executing, a callback function can be specified when
the packet is issued. Alternatively, the DsSync() function can be used to test for command completion.

The command packet terminates when the execution of all its primitive commands has completed. When
using DsSyncy(), the packet should be referenced using a command ID just as if it were a primitive
command. The result from the execution of the final primitive command in the packet is saved in the result
parameter of DsSyncy().

Timing
When a command packet is issued, the individual primitive commands contained in the packet are
processed by the command queue. Therefore, timing is based on the operation of the command queue.

Error Operations

An error in one of the commands in a packet will result in the operation being retried. Unlike regular
commands (commands issued through DsCommand()), command packet retries are performed starting
with the first command in the packet. This is done to make it more likely that the retry will succeed.

For data read (playback) operations, it is recommended that commands be issued as packets rather than
as individual commands.

The number of retries to be performed is specified by the count parameter. As in regular commands, no
retries are performed when count is set to 0, and unlimited retries are performed when count is set to -1.
If the retry count is exceeded when an error is generated, the packet is removed from the queue.

The Simple Callback

When data is to be read from the CD, a data read command is issued and data is transferred from the CD
sector buffer to main memory after each data ready interrupt. The library provides a simple callback feature
to allow easy handling of data ready interrupts.

Features of the Simple Callback

The simple callback is triggered from the data ready interrupt. It is triggered only when data is read
normally. If an error occurs during the data read, recovery is performed automatically by the system.

To use the simple callback feature, call DsStartReadySystem).
int DsStart ReadySyst en(

Dsl RCB func, /* pointer to callback function called for
successful data read. */
int count) [* retry count (-1: unlimited retries) */

Run-Time Library Overview CONFIDENTIAL

Extended CD-ROM Library 12-11

The count parameter specifies the number of retries to perform; -1 specifies unlimited retries. If the retry
count is exceeded and an error is generated, the callback function is triggered with DsIDiskError.

DsStartReadySystem() should be called after checking within the callback for the corresponding read
command (packet) to see if the command was successful. (If DsStartReadySystem() is called earlier, error
recovery operations may not function properly.) The current CD-ROM system does not distinguish between
errors that correspond to the command and other errors, so the system for the simple callback may
respond to an error from a command. Also, the lead sector may be missed if the system is started too late.

Recovery Behavior

If an error is generated during a read, the simple callback system performs a recovery operation. During
recovery, the command is reissued based on the last state saved by the system (the last command issued,
the last operating mode, the last seek position, the current position, etc.).

The seek position for a recovery operation is determined by the system. The restarted read operation starts
from the sector before the one where the error occurred. However, the callback function specified by func
will not be triggered until the sector following the previously successful sector is read.

For example, if an error occurred in the first read operation at the fourth sector, three sectors will have
already been read. Recovery processing is performed, and the callback function will trigger after the data
from the fourth sector is read.

First read: 1, 2, 3, (4)
Error occurs here (callback function is not triggered)
Head is noved to the preceding sector by the recovery
operation
Second read: ... 4, 5, 6
Cal | back function triggered fromthis sector

Description of Callback Function

The callback function that is triggered for data reads is specified according to the following format.

void function(u_char intr, u_char* result, u_long* subhead);
As in the standard data ready callback function, intr and resuit refer to interrupt data. intr almost always has
the value DslDataReady or DsIDataEnd (only for DA playback). However, intr has the value DsIDiskError
when:;
* Theretry count is exceeded and an error occurs
* The CD cover was opened during reading
Recovery processing for these cases must be handled by the application. When a data read is successful
and the callback is triggered, the sub-header of the data has already been transferred, because the system

looks at the subhead to check the data. The sector buffer pointer is moved to the start of the data, so the
data body can be transferred immediately. The size of the data body is 2048 bytes.

Exiting the System

When the desired data has been read, the simple callback should be exited. To end the simple callback,
use DsEndReadySystem).

voi d DsEndReadySysten(void);
Exiting from the system must be performed immediately after the last sector has been read. If exiting is

delayed, more read operations can take place. This may generate extra callbacks that can overwrite
memory. Thus, the callback function should exit after the final sector has been transferred.

CONFIDENTIAL Run-Time Library Overview

12-12 Extended CD-ROM Library

System Operation when Opening and Closing the CD Cover

When the CD cover is opened and closed during system operation, the simple callback in initial status is
terminated at that point and the callback function set by the application is called by intr==DsIDiskError.
Although the application must perform the following recovery, this can be set to be performed with the
simple callback system. Perform the setting with the DsReadySystemMode() function.

i nt DsReadySystembde (int node);
[* mode 0: Sinple callback is term nated when cover is opened
1: Recovery from opening/closing is perforned
automatically */

Calling a function when the mode is 1, will cause the system to not terminate if the CD cover is opened
during the operation of a simple callback. The simple callback waits until the cover is closed to reissue the
command and performs recovery in the same way as with normal errors. In such cases, application
callback functions regarding opening the cover are not called. When the cover is closed and the disk is not
set, the simple callback will terminate and the application callback function will be called by
intr==DslIDiskError. Confirmation of whether or not the disk has been set can be obtained using the result[0]
DslIStatStandby bit (if the disk is not set, the spindle will not move and this bit becomes 0) or with
DsSystemStatus(). Furthermore, the initial status mode is O.

Caution

* When using the simple callback to perform data reads, the operating mode should be set so that the
sector size is 2340 bytes (DsIModeSize1bit ON, DsIModeSize0 bit OFF).

* The present library cannot recognize if the disk was changed when the cover was opened and closed.
Therefore, when automatic opening/closing cover recovery is being carried out the player has
intentionally replaced the disk when, this causes incorrect data to be read and there is the possibility
that the game will be unable to continue.

* Simple callback is also used by the following high-level library functions:

DsGetDiskType()
DsPlay()
DsRead()

Therefore, the DsReadySystemMode() change also uses these functions. Particularly since
DsGetDiskType() is used when performing disk exchange, if it is used when recovery has been automized,
problems such as the application being unable to recognize if the player has opened the cover again during
processing may occur. Automatic recovery should not be performed in cases such as when disks are
being swapped.

Run-Time Library Overview CONFIDENTIAL

Extended CD-ROM Library 12-13

Other

Opening and Closing the CD Cover

The PlayStation CD-ROM drive requires special operations to be performed if the CD cover is opened or
closed in the middle of an access. libds handles these operations within the system.

When the CD cover is opened, the system changes to the busy state (DsIBusy), and commands from the
user are blocked. When the cover is closed, the system performs operations to re-check the disk, then
returns to the ready state (DslReady).

The operation that was being performed when the CD cover was opened will return an error. Also, all the
commands entered in the command queue will be deleted. Thus, it will be necessary to wait for the system
to return to the ready state at which time the operation will have to be repeated.

Immediately after the CD cover is opened or closed, the operating mode and the head position are
initialized, so subsequent operations must take this into account.

Notes Regarding Swapping of CDs

If CDs are swapped during execution, the system performs cover opening/closing operations. However,
the system does not determine the type of CD that is set, so this must be done by the application.

In the libds library, the operations up to CdDiskReady() provided by libcd are performed automatically.
Therefore, the type of CD should be checked once the system status becomes DsSystemStatus() ==
DslReady. The library calls the function DsGetDiskType(), which is equivalent to the function provided in
libcd to determine the CD type. Please refer to the reference material regarding this function.

The following steps are recommended for swapping CDs under libds:

Stop rotation of CD.

2. Output swapping message. If possible, have the user confirm that a new disk has been set by pressing
a button.

3. Poll the current status with DsStatus() to confirm that the cover has been opened (DslIStatShellOpen
bit ON).

4. Wait for DsSystemStatus() == DslIReady.

5. Determine the type of the CD using DsGetDiskType() and confirm that the CD is a PlayStation disk.

6. Confirm that the disk is the desired disk (check that it isn't a disk from another game, that it is the
proper disk from a series, etc.)

If a DsINoCD is returned at step 4, this means that the library was not able to confirm that a disk was set
(there was no rotation of the CD spindle within a predetermined period). In this case, a message such as
"CD not detected" should be displayed, then processing should return to step 2. Similarly, if a PlayStation
disk is not detected at step 5, a similar message should be output and processing should return to step 2.

Step 3 can be omitted if, in step 2, the user confirms that a disk has been set by pressing a button. Also,
the confirmation of the disk in step 6 should be performed by the application using a method such as
reading expected data from a specific position on the disk.

CONFIDENTIAL Run-Time Library Overview

12-14 Extended CD-ROM Library

Transfer Speed Change

When the transfer speed of the PlayStation CD drive is changed, it will be impossible to execute
commands for approximately three frames (1 frame =1/60 second). In libds, the system recognizes when
the transfer speed is changed, sets the status of the 3VSync after the change to DslBusy, and blocks the
execution of all commands. The commands issued during this period are stored in the command queue
and since the commands are automatically executed 3VSync after the transfer speed change have passed,
there is no need to wait 3VSync in the application program to issue a command.

Pre-seeking

Data reads can appear to execute more quickly by having the program seek to the start of the next data file
beforehand if the next file to be read is known. Using command packets for seeking is recommended as
retry processing can be automated. This minimizes the load on the main program flow when an error
OCCUrs.

Depending on the situation, the time required for data reads can be shortened by approximately
0.4 seconds when pre-seeking is performed. Also, it is easier to adjust timing when pre-seeking is used if
XA audio is being played back during a game.

Performing a Continuous Read to Access Multiple Files

Reducing seeks is the most effective way to shorten loading time when multiple data files are read. Seeks
can be reduced by laying out the CD so that data files are continuous, permitting a single read to access
multiple files. For each seek eliminated, approximately 0.4 seconds are saved, so five fewer seeks will result
in a loading time that is two seconds shorter.

If the files have different transfer destinations to main memory, the transfer address needs to be changed
during the read operation. This is easy to implement using the simple data callback. The libds sample code
gives an example of how the simple data callback can be used in this manner.

The Outer Three Minutes Problem

With the current CD-ROM subsystem, a seek to the outer three minute range of the CD-ROM can,
depending on the starting point of the seek, result in incorrect seeks. One of the following measures must
be taken to prevent this from occurring.

» Fill the outer three minutes (the final three minutes of data) with dummy data (the dummy data will not
be used).

» I CD-DAis to be used for background music, make the final track three minutes or longer. In this case,
no seeks will be generated for the outer three minutes as long as playback is not performed from the
middle of the track and no repeats are performed within the track. This will allow the CD-ROM
subsystem to operate properly.

» [f the outer three minutes must be used as a data area, access the outer three minutes as a single,
continuous file (such as for an opening or closing movie).

The outer three minutes here refers not to the outer area of the physical disc but rather to the outer area of
the region in which data (DA) is recorded.

Run-Time Library Overview CONFIDENTIAL

Extended CD-ROM Library 12-15

Notes Regarding DslIPlay, DsIReadN, DsIReadS

With the current CD-ROM system, the commands DslIPlay, DsIReadN, DsIReadS are considered complete
and return a DslComplete once the command has been received by the CD subsystem. However,
processing actually continues past this point, and errors may be generated.

In the following flow,

Conmand issued ... Success ... Seek conpleted ... (data read)...
an error may take place at this point

This type of error will be posted via an interrupt, but it will not be possible to associate the error with a
particular command (the processing of the command is considered complete with the initial Complete).
Thus, the command will not be retried in the command queue. Instead, error processing needs to be
handled by the application.

Furthermore, these errors will not be reflected in the callback functions set for individual commands.

The callbacks that provide notification of these errors are the data ready callback (set with
DsReadyCallback()) and the sync callback (set with DsSyncCallback()), which is independent of a specific
command.

In order to recover from errors, an error recovery routine must be provided in these callbacks, or the status
must be polled until the data read begins.

By setting the id argument for DsSync() to -1, it is possible to retrieve the execution results of the error for
which the corresponding command cannot be determined.

DsStatus() can be used to check to see if a data read has begun.

The following is an example of error handling using polling. In this example, the operation is blocked until
reading is begun. In order to avoid this, the routine that waits for the start of a read needs to be called once
per frame.

/* issue read command as a packet (unlimted retries)
systemw || keep on retrying until success */
DsPacket (Dsl MbdeSpeed | Dsl MbdeSi zel, &pos, Dsl ReadN, 0, -1);

/* wait for start of read */
while((DsStatus() & DslStatRead) == 0) {
/[* errors found with id == -1 are not handl ed by the system*/
if(DsSync(-1, result) == DslDiskError) {
/* performretry
in this exanple, the packet is issued again */
DsPacket (Dsl ModeSpeed | Dsl MbdeSi zel, &pos, Dsl ReadN, 0, -1);
}
}

CONFIDENTIAL Run-Time Library Overview

12-16 Extended CD-ROM Library

Below is an example of the use of the data ready callback.

/* set sync call back function when issuing packet */
DsPacket (Dsl MbodeSpeed | Dsl MbdeSi zel, pos, Dsl ReadN, cbsync, -1);

/* if sync callback function is successful, hook data ready call back */
voi d cbsync(u_char intr, u_char* result)

{
if(intr == Dsl Conplete) {
/* by hooking the ready call back here, confusion errors
correspondi ng to commands is avoi ded */
DsReadyCal | back(cbready);
}
}

/* Ready call back function
use for data transfer but have it handle recovery on error*/
void cbready(u_char intr, u_char* result)

{

if(intr == DsI D skError) {
/* clear callback ... */
DsReadyCal | back(0);
/* ... and then issue packet again */
DsPacket (Dsl MbdeSpeed | Dsl MbdeSi zel, pos, Dsl ReadN,

cbsync, -1);

return;

}
if(intr == Dsl DataReady) {
/* data transfer routine (omtted) */

}
}

The point to be noted here is that the data ready callback will receive natification of all errors. Since errors
corresponding to commands will be posted as well, the timing for hooking the callback function to the
interrupt must be determined carefully. In this example, the callback function is hooked when the packet
succeeds. If this method is used, the data ready callback must be removed as soon as the read is finished.
Otherwise, read packets might be issued unpredictably. The simple callback handles the error, so the
application does not need to perform any error handling.

Completion of Data Reads

For cases where the application sets up a system where a command is issued to read data from a CD and
data is transferred using the data ready callback, there is a trick to handling the end of the read.

When a read operation is to be ended, issuing the DsIPause command will halt operations, but one or two
sectors may be read before the CD subsystem receives the command and halts the operation. Depending
on the callback function hooked to the data ready interrupt, this excess data may be transferred to main
memory, resulting in data loss. In order to avoid this, the callback function must be removed from the
interrupt as soon as the desired number of sectors has been read. Callback functions are unhooked by
calling DsReadyCallback() with an argument of 0. By unhooking the callback function, excess data will not
be transferred to main memory even if extra sectors are read. DslPause should then be issued to halt the
read operation.

Run-Time Library Overview CONFIDENTIAL

Extended CD-ROM Library 12-17

Noise during CD-DA/XA playback
When noise occurs during CD-DA/XA playback, check the following points:

Is the converted data correct?

The sound tool assumes that data is 16-bit straight PCM data. Note that it is not compatible with AIFF.
When converting AIFF, since the header and footer information which appears at the beginning and end is
converted into sound, noise will be produced. The SoundDesignerll 2.5 sampling data format is 16-bit
straight PCM, so it can be used as is.

Does the volume decrease when playback is paused or a seek is performed?

Pausing a CD or performing a seek while sound is playing can cause clip noise to be produced. When
pausing a game where the CD also pauses, issue the CD command after performing a fade out.

Does the XA data contain a large number of high pass components?

With XA data, sound is compressed to 1/4, so noise is sometimes produced. The noise can become
particularly evident when there are a large number of high pass components. Perform a pre-process such
as installing a filter in advance to avoid this.

CONFIDENTIAL Run-Time Library Overview

12-18 Extended CD-ROM Library

Run-Time Library Overview CONFIDENTIAL

Chapter 13:
Controller/Peripherals Library

Table of Contents

ETC Library Overview 13-3
Library and Header Files 13-3
Callbacks 13-3
Callback Types 13-4
Callback Initialization 13-4
Callback Termination 13-4
Callback Pointers 13-5
Multiple Callbacks 13-5
Default Callbacks and Events 13-6
Controller 13-6
Video Mode 13-7
Programming Notes 13-7
Controller Library 13-11
Library and Header Files 13-11
Additional Features Available for DUAL SHOCK Controllers 13-11
Receive Buffer Data Format 13-11
Obtaining the Horizontal and Vertical Position With the Gun Interrupt (Terminal Type=3) 13-14
Initialization 13-15
Precautions 13-16
Multi Tap Library 13-18
Library and Header Files 13-18
Overview 13-18
Gun Library 13-19
Library and Header Files 13-19
Button Data 13-19
Location Data in the Horizontal/Vertical Direction on the Screen 13-20
Correction to Location Data in the Horizontal Direction on the screen 13-20
Memory Card 13-21

CONFIDENTIAL Run-Time Library Overview

13-2 Controller/Peripherals Library

Run-Time Library Overview CONFIDENTIAL

Controller/Peripherals Library 13-3

The Controller/Peripherals libraries are:
» ETC library (libetc): controls callbacks for performing low-level interrupt processing and controller-
related functions. It also includes controller-related functions.

* Gun library (libgun): detects the position of the gun connected to the PlayStation and pointed towards
the television screen.

e Multi Tap library (libtap): provides communication services for multiple controllers and Memory Cards
when a Multi Tap is connected to the PlayStation.

« Controller library (libpad): provides services for managing ordinary controllers and DUAL SHOCK
controllers connected to the PlayStation.

Some Controller/Peripheral functions are also provided in the Kernel library (libapi)

For a complete description of all Controller/Peripherals functions, refer to the Run-Time Library Reference.

ETC Library Overview

The ETC library (libetc) controls callbacks. All callback functions used in each library are managed by this
library. At present, functions relating to the controller are also included in this chapter. The details relating to
callbacks and corresponding non-blocking functions are described in the Run-Time Library Reference.

Library and Header Files
To use the ETC library, your application must link with the file | i bet c. I i b.

Source code must include the header file | i bet c. h.

Callbacks

Many functions such as graphics drawing, transferring data to the sound buffer, and loading data from the
CD-ROM, may execute in parallel (asynchronously) in the background. These functions are called non-
blocking functions, because they don’t block the CPU from performing other tasks.

You can define callback functions that execute when the non-blocking function actually terminates. What
actually happens is that when the non-blocking function completes, it generates an interrupt and the
program jumps to the address registered as the callback. When the callback returns, the program returns
to the point where the callback began, and normal processing resumes.

A dedicated local stack is used for a callback function so that control can return to the original state after
the callback returns. All interrupts are prohibited within callback functions. (Areas in which interrupts are
prohibited are called critical sections.)

Figure 13-1: Callback Context

Normal section Critical section

main() {

|-' callback() {

A

CONFIDENTIAL Run-Time Library Overview

13-4 Controller/Peripherals Library

Callback Types

The following are some of the currently supported callbacks:

Table 13-1: Callback Types

Function Name Corresponding non-blocking functions
VSyncCalllback

DrawSyncCallback DrawOTag()/Loadlmage()/Storelmagel()
DecDCTinCallback DecDCTin

DecDCToutCallback DecDCTout

CdSyncCallback CdControl

CdReadyCallback CdControl

CdDataCallback

See the documentation for individual libraries for more information about each callback.

Callback Initialization

When using callbacks, the local stack must be created in advance, which is done with the initialization
function ResetCallback(). The initialization functions of most libraries already include a call to
ResetCallback(), so it is not usually necessary for an application to call this function explicitly.

The following table shows the initialization functions that call ResetCallback() automatically:

Table 13-2: Initialization Functions that Call ResetCallback()

Function Name Contents

ResetGraph(0) Drawing device initialization
DecDCTReset(0) Decompression device initialization
CdInit(0) CD-ROM initialization

Ssinit() Sound source device initialization
Padinit(0) Controller initialization

After calling ResetCallback(), all callback pointers are initialized to NULL(O).

Callback Termination

Callbacks may be temporarily halted by calling StopCallback(). A callback halted by StopCallback can be
restarted by calling ResetCallback() again. Callback function pointers recorded before StopCallback() is
called are not saved when the callback is restarted.

Run-Time Library Overview CONFIDENTIAL

Controller/Peripherals Library 13-5

Callback Pointers

A single callback is limited to recording one function pointer at a time. Setting a new callback discards the
previous pointer. Therefore, it is an application’s responsibility to create multiple pointers in a single callback
if desired.
mai n(voi d) { /*Mai n Progrant/
voi d cal | back(void);

VSyncCal | back(cal | back);

}

void (*func) () ={ /*cal | back tabl e*/
funco, /*1st cal | back to be called*/
funcl, /*2nd cal | back to be call ed*/
func2, /*3rd cal |l back to be called*/
0,

b

voi d cal | back(void) /*parent callback progrant/

{ . .
int i;
for (i=0; func[i]; i++)

(*func[i])();
}

Previous callback pointers are discarded when a new callback is created. For this reason, if you are
creating a temporary callback, you must return to the state that existed at the time the pointers were
released.

void(*old)();
voi d addVSyncCal | back(voi d(*func)())

{
ol d=VSynccCal | back(func);
}
voi d del VSyncCal | back(voi d)
{
VSyncCal | back(ol d);
}

Multiple Callbacks

The callback context uses one local stack referenced by all current callbacks. Therefore, a callback cannot
be launched from within another callback. When a callback request is generated from within a callback
function, the requested function is held and its process is made to wait until the callback currently running
has terminated.

The example below shows that if event1 and event2 are generated within a callback, execution of the
corresponding callback waits until the callback at the top of the queue finishes processing. Note that time
is required for processing within a callback. However, a callback with a timer used with a root-counter
(RCnt) interface is given preference over normal callback processing.

CONFIDENTIAL Run-Time Library Overview

13-6 Controller/Peripherals Library

Figure 13-2: Callback Context

Normal section Critical section

4_
N eventO

main() callbackO()
{ ..(event0)

v

callback()
..(event?)

v

L callback2()
return(); ..(event2)

“+gventl

A

“+gvent2

Default Callbacks and Events
When a library is initialized, the default callback functions are registered.

For example, when the CD library is initialized, it registers the CdSyncCallback() function, which is called
when a CD-ROM primitive command terminates. A callback like the one below is created.

static void def_chsync(unsigned char intr, unsigned char *result)

{

}

Termination of commands and data reading can be detected through the event handler when the default
callback is used. Take care when installing a new callback, because the default callback is cancelled, and
event transmission is halted.

Del i ver Event (HWCdRom EvSpCOWP) ;

Controller
Libetc provides a method of communicating with the standard controller:

e Call Padinit() to initialize the controller
* Call PadRead() to begin reading the controller
» (Call Pad Stop() to end reading the controller

The content of the initialized controller is scanned once at the time of vertical blanking, and the most recent
condition can be obtained at any time by the PadRead() function.

PadRead() returns a 32-bit integer value. The upper 16 bits are for controller A, and the lower 16 bits for
controller B.

See libetc.h for a description of controller button assignments.

The Padlnit/PadRead interface can be used only with the standard controller.

Run-Time Library Overview CONFIDENTIAL

Controller/Peripherals Library 13-7

Video Mode

SetVideoMode() function is provided in the library for declaring the present video signal mode. Although the
NTSC mode video signal environment is designed to be the default in the present library and due to the fact
that the SetVideoMode() function mentioned above is called before all other library functions, the related
library determines the mode. It will then be possible to perform operations which conform to the set video
signal mode environment.

Please refer to the related libgpu and libsnd documents.

Programming Notes
This section describes the following programming issues:

* VSync callbacks
* The stack pointer and operations related to Exec processing
* Switching callbacks between processes

VSync Callbacks

Although there is only one callback entry internally, the RCnt interface maintains an internal linked list of
callback function pointers. There is no predetermined sequence in which linked callbacks are called from
the system.

If a single callback needs to call multiple functions in a specific sequence, VSyncCallback() should be used.
See “Callback Pointers” for a code sample.

Timing of VSync Interrupts

VSync interrupts are generated at the beginning of a V-BLNK. Thus, rendering starts at the beginning of the
callback function.

Rendering can be performed with a single buffer if it can be finished within a single V-BLNK interval.
However, the start of rendering will be delayed if a sound driver is activated by the VSync interrupt and
called (with SsSeqCalledTbyT) before the rendering function (DrawOTag). This prevents rendering from
completing before the end of the V-BLNK interval.

cal I back()

{
SsSeqCal | edThyT() ;
Dr awOTag(ot) ;
DrawSync() ;

}

Figure 13-3: Timing with VSync Interrupts (1)

< V-BLNK >
callback
+——SsSeqCalledTbyT —>|

DrawOTag

o |

CONFIDENTIAL Run-Time Library Overview

13-8 Controller/Peripherals Library

In the following example, rendering can be performed in parallel with sound driver execution.

cal | back()

{
Dr awOTag(ot) ;
SsSeqCal | edThyT() ;
DrawsSync();

}

Note that since DrawOTag() is a non-blocking function, it should return immediately.

Figure 13-4: Timing with VSync Interrupts (2)

< V-BLNK ———
callback
DrawQOTag
<+—Draw
<4——SsSeqCalledTbyT —>|
DrawSync

The Stack Pointer and Operations Related to Exec Processing

Libsn.lib contains useful functions related to the PC file system. It also contains routines that clear data
areas and set the stack pointer, which are performed before invoking main(). Files created with a series of
operations beginning with ccpsx always contain the section main. libsn.lib reads the DIP switch settings on
the H2000 and sets the stack as far back as possible. 2MByte.OBJ and 8MByte.OBJ are provided for
2MBYyte and 8MByte settings.

A problem may occur when an executable file is called and control returns to the calling process after the
completion of execution. Without creating a linker file, the value of the stack pointer of the executable
program which was called cannot be determined. Even if a value were entered in the Exec structure, it
would be ineffective because of processing prior to main().

In other words, the contents of the calling process's stack is destroyed by the called program. When the
called program completes and tries to return, the return address is missing, resulting in a hang.

Thus, the called program needs to have processing prior to main() that is independent of either
2MBytes.OBJ, 8MBytes.OBJ, or libsn.lib, to ensure that no stack settings are made. This can be
accomplished by linking the called program (which is expected to return) to NONE.OBJ. This is done in
exactly the same way as if 2MByte.OBJ were used.

Switching Callbacks between Processes

In applications that use many events and callbacks, there have been reports of crashes when interrupts are
issued while the system is switching between processes. Many of these crashes are due to callbacks that
take place during process switching.

Problems caused by callbacks are difficult to trace and require a considerable amount of time to debug.
Since these problems are not easily reproducible, it is possible for problems to surface after a program has
already hit the market.

The following is a brief description of the callback initialization sequence during process switching. Please
use this as a reference when writing applications.

"Process switching" means transferring control (changing the program counter) to a different program that
is not linked to the same module. Process switching takes place when a child process is activated by a

Run-Time Library Overview CONFIDENTIAL

Controller/Peripherals Library 13-9

resident parent process. The initial activation of an application (when control is transferred to PSX.EXE) is
also considered a process switch from the OS to the application.

Child Processes and Callbacks
Data, together with a section of code for the callback, are linked in memory with the application.

When a parent process transfers control to a child process, the callback environment must be recreated.
For the parent process:

1. Close all events (CloseEvent).
2. Temporarily suspend callbacks (StopCallback).
3. Jump to the child process (Exec).

For the child process:

1. |Initialize callbacks (ResetCallback).

2. Re-initialize library (CdInit, ResetGraph etc).
3. Reset application callbacks.

4. Reopen events (OpenEvent).

These operations are also necessary when control returns from the child process back to the parent
process.

Consider the following example.
/* Switching call backs */

/* Parent: */

mai n() {
St opCal | back() ; /* suspend cal | backs*/
Exec(&chi |l d_progranj; /*activate child process*/
Reset Cal | back(); /* reset callbacks*/

}

/[* Child: */

mai n() {
Reset Cal | back(); /* reset callbacks*/
St opCal | back() ; /* stop cal |l backs*/
return;

}

In this example, the child process is activated without switching callbacks, and the function pointers for the
parent callbacks are kept in the callback table (the interrupt jump table).

This means that once the child process starts, interrupts that are generated will invoke the callback
functions linked to the parent program, and control will not be transferred to the callbacks of the child
program. This may lead to unexpected results.

The same analysis applies when the child process completes and control returns back to the parent.

Even if the called process (the child process) executes a ResetCallback() at the beginning, operations will
be unstable if the calling process (the parent process) does not execute a StopCallback() at the end.

Interrupts generated in the interval between the activation of the child process and the reinitialization of the
callback table by ResetCallback() will also produce callbacks from the parent process.

CONFIDENTIAL Run-Time Library Overview

13-10 Controller/Peripherals Library

When the system is booted and an application is first executed, the OS sees the application as the first
child process. Thus, for the same reasons as those described above, it is necessary to issue a
ResetCallback() at the start of the program so that all the existing callbacks can be quickly replaced with
callbacks linked to the application.

Shared Libraries and Callbacks

When shared libraries are used, each process can share a single resident callback. In this case, there is no
need to switch callbacks between processes. Even if shared libraries are used, however, it is crucial that
ResetCallback() be executed immediately after an application is launched.

Callback Context

Callbacks are normally executed in the callback context; however, they do not always do so. Many
callbacks are activated by a hardware interrupt, and when detected in the library function, the callback may
be executed in the foreground, in order to reduce meaningless context switching.

For example, Loadlmage() is normally executed in the background. However, when its transfer area is very
small, the transfer is completed before returning from Loadlmage(). Because main memory is shared by the
drawing subsystem and the CPU, a reversal of processing terminations such as this by means of bus
access timing can occur.

(¢ Loadlmage() 4’|
t
4— GPU-Translation Ai retum

DrawSyncCallback
(Foreground)

Figure 13-5:

Since callbacks are prohibited within Loadlmage(), the callback is held even if the transfer is completed
within the function. At such times, Loadlmage() will confirm the transfer status before termination, and even
if the transfer has completed, the callback is activated at that location without the context being switched.
As a result, functions which are registered in DrawSyncCallback() will be activated in the foreground.

Conversely, at Loadlmage() termination, if the actual termination has not been completed or the command
remains in the command queue, it is returned as is. Normally, since the termination of the actual transfer is
slower than the Loadlimage() function return, this strategy is selected.

Because of this feature, maximum coherency to memory access can be maintained even when extremely
small areas of image (around 8x8) are transferred. On the other hand, it is possible for a callback to be
activated in both the foreground and background (callback) contexts. Since the decision as to which
context it is executed in depends on the space situation of the main bus, the CPU, and the subprocessor
at that time, it is impossible to predict.

CheckCallback() can be used to determine whether a function is executing in a callback context (non-zero
return value) or a normal context (zero return value). Normally, it’s not necessary to know which context a
callback will be activated in. However, there are cases, such as when switching threads within a callback,
where the current context situation is known. In such cases it is necessary to use CheckCallback() to
confirm the current context.

Run-Time Library Overview CONFIDENTIAL

Controller/Peripherals Library 13-11

Controller Library

The controller library (libpad) provides services that allow applications to interact with the controllers, the
input devices of the PlayStation. Applications can directly process data from the controllers, and
dynamically identify each controller. The library also supports the additional features of DUAL SHOCK
controllers.

Note: This library cannot be used in conjunction with the Multi Tap library (libtap) or the gun library (libgun).
PadInitMtap() and PadInitGun() are provided in libpad for the Multi Tap and gun.

Library and Header Files
To use the controller library, your application must include the file | i bpad. i b.

Source code must include the header file | i bpad. h.

Additional Features Available for DUAL SHOCK Controllers

* Query the number of actuators (vibrators) available in the controller.
* Query actuator features.

* Query the current drain of the actuator.

» Set up the data list for controlling the actuator.

» Detect actuator combinations that can be used simultaneously.

* Query the type of terminal supported by the controller.

» Select the terminal type from the program.

» Select the lock/unlock setting of the terminal type selection switch.

Receive Buffer Data Format
The format used to store data in the receive buffer is described below.
Offset 0: 0x00 = successful; other values = failure
Offset 1:

* The upper four bits indicate the terminal type (see Table 13-3).

» The lower four bits represent half the byte count of the data received from the terminal (stored in the
receive buffer starting at offset 3).

The remaining tables show the data layout for each type of controller.

Please refer to the documentation corresponding to the terminal type for information regarding the physical
layout of the buttons and channels.

Table 13-3: Terminal Types

Terminal Type Controller Name Model Number

1 Mouse SCPH-1030

2 16-button analog SLPH-00001 (Namco Ltd)
3 Gun controller SLPH-00014 (Konami Ltd)
4 16-button SCPH-1080,1150,1200

5 Analog joystick SCPH-1110

CONFIDENTIAL Run-Time Library Overview

13-12 Controller/Peripherals Library

Terminal Type Controller Name Model Number
6 Gun controller SLPH-00034 (Namco Ltd)
7 Analog Controller SCPH-1150,1200
8 Multi Tap SCPH-1070
Table 13-4: Mouse
Offset Contents
1 Upper four bits; Ox1
Lower four bits: (Byte count of received data) / 2
2,3 Button state 1: released, 0: pressed
4 Displacement along the X axis (-128 to 127)
5 Displacement along the Y axis (-128 to 127)

Table 13-5: 16-button Analog

Offset

Contents

1

w

~N O OB~

Upper four bits: 0x2

Lower four bits: (Byte count of received data) / 2
Button state 1: released, O: pressed

Rotation O to 128 to 255

| button O to 255

Il button O to 255

L button O to 255

Table 13-6: Gun Controller (Konami Ltd.)

Offset

Contents

1

2,3

Upper four bits: Ox3
Lower four bits: (Byte count of received data) / 2
Button state 1: released, 0: pressed

Table 13-7: Analog Joystick

Offset

Contents

1

w

~N o o0~

Upper four bits: 0x5

Lower four bits: (Byte count of received data) / 2
Button state 1: released, 0O: pressed

Position along the X axis (right stick) 0 to 128 to 255
Position along the Y axis (right stick) O to 128 to 255
Position along the X axis (left stick) O to 128 to 255
Position along the Y axis (left stick) O to 128 to 255

Run-Time Library Overview

CONFIDENTIAL

Controller/Peripherals Library

Table 13-8: Gun Controller (Namco Ltd.)

Offset

Contents

1

w

~N oo OB~ DN

Upper four bits: Ox6

Lower four bits: (Byte count of received data) / 2
Button state 1: released, 0: pressed

Position along the X axis: Low-order byte
Position along the X axis: High-order byte
Position along the Y axis: Low-order byte
Position along the Y axis: High-order byte

Table 13-9: Analog Controller

Offset

Contents

1

w

~N OO O B~

Upper four bits: Ox7

Lower four bits: (Byte count of received data) / 2
Button state 1: released, O: pressed

Position along the X axis (right stick) O to 128 to 255
Position along the Y axis (right stick) O to 128 to 255
Position along the X axis (left stick) O to 128 to 255
Position along the Y axis (left stick) O to 128 to 255

Table 13-10: Receive Data Structure For Multi Tap Controller

Offset Contents
1 Upper four bits: 0x8
2 Port A Receive result 0x00: successful,
other values: failed
3 Upper four bits: Terminal type
Lower four bits: (Byte count of received data) / 2
4-9 Received data
10 Port B Receive result 0x00: successful,
other values: failed
11 Upper four bits: Terminal type
Lower four bits: (Byte count of received data) / 2
12 -17 Received data
18 Port C Receive result 0x00: successful,
other values: failed
19 Upper four bits: Terminal type
Lower four bits: (Byte count of received data) / 2
20-25 Received data
26 Port D Receive result 0x00: successful,
other values: failed
27 Upper four bits: Terminal type
Lower four bits: (Byte count of received data) / 2
28 - 33 Received data

CONFIDENTIAL

Run-Time Library Overview

13-13

13-14 Controller/Peripherals Library

Table 13-11: Button State Bit Assignments (1)

Bit D15 D14 D18 D12 D11 D10 D9 D8
16-button = d — T ST SEL
Analog Controller — i — T ST R3 L3 SEL
Analog joystick — J — T ST SEL
16-button analog — 4 — T ST
Mouse
Gun controller (Konami) ST
Gun controller (Namco) A

Table 13-12: Button State Bit Assignments (2)
Bit D7 D6 D5 D4 D3 D2 D1 DO
16-button O X O X R1 L1 R2 L2
Analog Controller O X 8] FaX R1 L1 R2 L2
Analog joystick O X O X R1 L1 R2 L2
16-button analog A B R
Mouse Left Right
Gun controller (Konami) TRG o
Gun controller (Namco) B TRG

(All bits 1: released, 0O: pressed)

Obtaining the Horizontal and Vertical Position with the Gun Interrupt (Terminal Type=3)

The horizontal and vertical positions of the gun can be obtained by using PadInitGun(). (For terminal type=6
guns, coordinate information is sent back to the receive buffer during normal communication with the
controller, so this operation is not required.) PadinitGun() simply initializes the interrupt handler for obtaining
horizontal and vertical position information. Therefore, apart from PadInitGun(), the controller
communication environment must be initialized with either PadInitDirect() or PadInitMtap().

Before PadEnableGun() is called, interrupt requests for obtaining the coordinates are sent during each
frame to the port at which the type 3 controller is connected. If coordinate information does not need to be
retrieved from each port, the unneeded interrupts can be suppressed by masking them with
PadEnableGun().

Adjustment of horizontal position data

Currently, the horizontal position data returns the system clock value, which is cleared to zero at each
H blank. This value needs to be adjusted to compute the pixel value as a function of screen mode and
horizontal resolution. The relationship between the system clock and the pixel clock is shown below.

Table 13-13: System Clock-Pixel Clock Conversion Table

Mode Horizontal resolution Coefficient

NTSC: 256 0.158532
320 0.198166
384 0.226475
512 0.317065
640 0.396332

Run-Time Library Overview CONFIDENTIAL

Controller/Peripherals Library 13-15

Mode Horizontal resolution Coefficient

PAL: 256 0.157086
320 0.196358
384 0.224409
512 0.314173
640 0.392717

[Pixel value] = [Coefficient] x [System clock valug] + [Offset]

Initialization

Initialization flow

1.

2.
3.
4

Initialize the controller environment with PadInitDirect(), PadlnitMtap().
Set up the receive buffer with PadSetAct(...).
Begin communication with the controller with PadStartCom).

DUAL SHOCK only: When connection with the controller has been established, use PadSetActAlign()
to set up the sequence to transmit actuator control data.

Identifying the connected controller and Obtaining actuator (vibrator) information

1.

Identify the controller: Call PadGetState() to determine the connection state of the controller. When it
is known that the controller has a vibration function, use PadinfoMode(port, InfoModeCurExID,0) to
determine the controller ID.

Obtain actuator information: WWhen the Controller ID (value obtained from PadinfoMode(port,
InfoModeCurExID, 0)) is different, the number of actuators and the type are also different. When calling
PadSetActAlign(), the actuator functions from PadActinfo() and the controller ID should be confirmed.

Handle controller swapping, controller mode switching: The return value from PadGetState()
changes when controllers have been swapped or the controller mode has been switched (see below).
Controller swapping and controller mode switching can be continuously monitored using this function.

Monitor the controller connection state: The return value from PadGetState() changes only during
the vertical retrace interval, so the value need be polled only once per frame.

Changes in the return value from the controller connection state function (PadGetState())

1) DUAL SHOCK controllers

1.

4.

Controller not connected: PadStateDiscon

1

Controller connection detected: PadStateFindPad

l

Request for actuator information received: PadStateReqginfo
1

Retrieval of actuator information completed: PadStateStable

If the controller changes mode in states 3 - 4, a transition is made to state 2.

CONFIDENTIAL Run-Time Library Overview

13-16 Controller/Peripherals Library

2) Other controllers
1. Controller not connected: PadStateDiscon

L

2. Controller connection detected: PadStateFindPad
4

3. ldentify controller type: PadStateFindCTP1

If the controller changes mode in state 3, a transition is made to state 2.

Using controllers with a Memory Card

When using a Memory Card, the controller should be initialized after the Memory Card is initialized. The
initialization parameter should be set to '0', as in InitCARD(0). Functions PadInitDirect(), PadinitMtap()
should be called before calling PadStartCom).

INitCARD(0);
StartCARD();
_bu_init();
PadinitDirect();
PadSetAct(...);
PadStartCom();

The parameter of MemCardInit() should also be set to 0 when using the simple Memory Card library
(libmcrd). MemCardinit(0) and MemCardStart() should be called before the controller is initialized.

Using the Multi Tap with Memory Cards

When more than one Memory Card is connected to a single Multi Tap, and a Memory Card access is
performed after any of the Memory Cards are switched, MemCardAccept() should be called for each
Memory Card that is accessed. This is because libmcrd keeps a single directory information buffer for each
port on the main PlayStation unit, so only one directory information set can be controlled when more than
one Memory Card is connected to a single Multi Tap.

Precautions

Limitations of the Analog Controller

This section discusses some limitations of the Analog Controller.

1) Margin of error for the stick center position

When the Analog Controller stick is released, it tries to return to the center position. However, depending

on the position where the stick is released, it might actually return to an off-center position. In applications
where stick release is determined from stick position information, it is also necessary to take into account
the center position error. In the SCPH-1200, the guaranteed value for the range within which the stick will
return to the center when released is 80 h +/- 25 h.

2) Number of actuators that can be used simultaneously

The Analog Controllers have a vibration feature, but the number of actuators that can be vibrated
simultaneously is limited. This limit is determined by the maximum available current drain from the
PlayStation. When using the vibration feature, the following rules should be followed.

The actuators should be operated so that the total current drain does not exceed 60 units. For actuator 2,
any value other than "0x00" is interpreted as "ON". This restriction does not apply if no Multi Tap is used.

The current drain for each of the actuator types is given below.

Run-Time Library Overview CONFIDENTIAL

Controller/Peripherals Library 13-17

Table 13-14: Actuator Current Drain

Model Actuator type Current drain
SCPH-1150 Actuator 1 10 units
SCPH-1200 Actuator 1 10 units
SCPH-1200 Actuator 2 20 units

If the total current drain of an actuator exceeds 60 units, a limiter in the library is activated to prevent that
actuator from operating.

Actuators are prioritized first by port number, then by actuator number. The following examples illustrate
this.

Example 1: Assume that controllers are connected to ports 00, 01, 02, 03, and each actuator has a
current drain of 20 units. A request is made to activate actuator 1 in all controllers.

The total current drain is obtained by summing the individual actuator current drains in sequence, by port
number. Since the total current drain exceeds 60 units, the actuator request for the exceeding controller is
denied. The actuators for ports 00, 01, 02 are activated, but the actuator on port 03 is not activated.

Example 2: Requests are received for:
Actuators 1, 2 for port 00 (10, 20 units)

Actuator 2 for port 01 (20 units)
Actuator 2 for port 02 (20 units)
Actuator 1 for port 03 (10 units)

The total current drain for ports 00, 01 is 50 units. The request for port 02 would exceed 60 units, so it is
denied. However, if port 03 is included, the total current drain doesn’t exceed 60 units and consequently,
the request from port 03 is granted.

Precautions when transmitting data to the controller during specific frames

Theoretically, communication with the controller should take place in each Vsync. However, this may not
happen when there are frequent, intensive interrupts, such as during streaming.

If PadChkVsync() is called during a frame when communication with the controller has occurred, a value

of 1 is returned. If PadChkVsync() is called more than once and no communication has taken place with the
controller, O is returned. The data stored in the transmit buffer will generally be sent during the next Vsync.
A return value of O from PadChkVsync() indicates that the data from the previous frame was not sent to the
controller. When data is transmitted to the controller only during particular frames, the return value of
PadChkVsync() should be checked to ensure that the data was actually sent.

Calling PadInitDirect(), PadInitMtap(), and PadInitGun()

In libpad, controller connection state is maintained by the library. If the controller connection state is invalid,
the controller will not be recognized. Therefore, when a controller is used by both parent and child
processes, each process must call PadinitDirect() or PadInitMtap().

Gun connection state is also maintained by the library. If the gun connection state is invalid, gun position
information cannot be obtained. Therefore, when both parent and child processes use an ID=3 gun, for
example, each process must call PadlnitGun).

CONFIDENTIAL Run-Time Library Overview

13-18 Controller/Peripherals Library

Multi Tap Library

It is possible to use up to 4 controllers and Memory Cards cards for 1 port with a Multi Tap.

Library and Header Files
To use the Multi Tap library, you must link with the file | i bt ap. |i b.

Source code must include the header file | i bt ap. h.

Overview

The communication can be performed if at least one controller is connected to the Multi Tap. If no
controller is connected, a communication error will occur.

The communication is available only with the port A of the Multi Tap in the software which doesn't use
libtap.lib. In this case, the communication data will be just passed through the Multi Tap in the same way
the controller is connected directly to PlayStation.

The insertion and extraction of the Multi Tap and the controller connected to the Multi Tap are permitted
during the operation.

Table 13-15: Receiving Packet Format

Byte Content

0 Result of receiving
1 ID (0x80)

2 Controller_A Result
3 Controller_A ID

4-9 Controller_A Data
10 Controller_B Result
11 Controller_B ID
12-17 Controller_B Data
18 Controller_C Result
19 Controller_C ID
20-25 Controller_C Data
26 Controller_D Result
27 Controller_D ID
28-33 Controller_D Data

The access to the Memory Card is performed in the same way as the usual operation. The channel is
specified with the "port number x16 + card number”, and by setting from O to 3 for the card number, the
access to each slot is available.

Table 13-16: Memory Card

Port 1 Port 2
A 0x00 0x10
B Ox01 Ox11
C 0x02 0x12
D 0x03 0x13

Run-Time Library Overview CONFIDENTIAL

Controller/Peripherals Library 13-19

Caution

When using the Memory Card, the InitCARD argument must be set at '0'".

I ni t TAP(buf A, | enA, bufB, |enB);
I ni t CARD(0);

Start CARD() ;

_bu_init();

Start TAP() ;

ChangeC ear PAD(0) ;

When the Multi Tap is not inserted into port A, it is sometimes not recognized. Also, please follow the
instructions described in the usage manual.

Gun Library

Library and Header Files
To use the gun library, link with the file I i bgun. | i b.

Source code must include the header file | i bgun. h.

Button Data

The Ibgun initialization routine is

I nit GUN(char *bufA, char*lenA char*bufB, long | enB, char *buf0, char *bufl,
I ong | en)

Table 13-17 shows the format of the bufA, bufB structures. Table 13-19 shows the format of the bufO,
buf1 structures.

Table 13-17: Button Data (bufA, bufB)

Byte Contents
0 Receive result
1 ID:

Higher 4 bits - Controller type
Lower 4 bits - Number of bytes of receive data / 2

(When the lower 4 bits are all O, it means the number of bytes of receive
data is 32 bytes.)

2,3 Button data

1. ID
The gun ID is 0x31 (Controller type: 3, Number of bytes of receive data: 2)

CONFIDENTIAL Run-Time Library Overview

13-20 Controller/Peripherals Library

2. Button data

Table 13-18

First byte - - - - S - - -
Second byte O X
S: Start button

O: Trigger of gun
x: Button

Location Data in the Horizontal/Vertical Direction on the Screen
Table 13-19 shows the format of the bufO, bufl structures.
The maximum number of receive data is 20.

In order to increase the accuracy of the gun, DMA and interrupt processing are all blocked within the gun
interrupt processing from library 4.0 onwards. Since the overhead increases in Hsync units when the
number of interrupts rises, it is recommended that it be set to a small number.

Table 13-19: buf0, bufl1 structures defined in InitGUN

Byte Contents

0 Not used

1 Number of available horizontal/vertical
direction counter value

2,3 Vertical direction counter value O

4,5 Horizontal direction counter value O

6,7 Vertical direction counter value 1

8,9 Horizontal direction counter value 1

78,79 Vertical direction counter value 19

80,81 Horizontal direction counter value 19

(The counter value is given as a half word.)

Correction to Location Data in the Horizontal Direction on the screen

The horizontal direction location data currently returns the system clock value which zero clears every H
blank. Therefore, it is necessary to make adjustments in accordance with the screen mode and horizontal
resolution. The following table displays system clock and pixel clock compatibility:

Table 13-20: System Clock/Pixel Clock Conversion

Mode Horizontal direction resolution Coefficient

NTSC 256 0.158532
320 0.198166
384 0.226475
512 0.317065
640 0.396332

Run-Time Library Overview CONFIDENTIAL

Controller/Peripherals Library 13-21

Mode Horizontal direction resolution Coefficient

PAL: 256 0.157086
320 0.196358
384 0.224409
512 0.314173
640 0.392717

[Pixel value] = [Coefficient] x [System clock valug] + [Offset]

Memory Card

When using the Memory Card, pass 0 to InitCARD():

Init@n (bufA, IenA bufB, lenB, bufl, buf2, len);
I ni t CARD(0);

Start CARD() ;

bu_init();

Start GUN();

ChangeCl ear PAD(0) ;

CONFIDENTIAL Run-Time Library Overview

13-22 Controller/Peripherals Library

Run-Time Library Overview CONFIDENTIAL

Chapter 14:
Link Cable Library

Table of Contents

Overview 14-3
Library and Header Files 14-3
Driver and BIOS 14-3
Link Cable Driver 14-3
Events 14-3
Wait Callback 14-4
Termination Conditions for Synchronous Input/Output 14-4
Interrupt and Read/Write Functions 14-4
Number of Characters for Receiving 14-4
Error Processing 14-4
BIOS 14-5
Serial Controller 14-7
Communication Specifications 14-7
Control Line Transition 14-7
Programming Hints 14-8
Detecting the Other PlayStation’s Connection (1) 14-8
Detecting the Other PlayStation’s Connection (2) 14-8
Background Receiving by the Ring Buffer 14-9
Slow Speed of Asynchronous Write 14-9
Lightest Overhead Transmission 14-9
Unit-Number of Characters for Receiving with the Exception of One Character 14-9

CONFIDENTIAL Run-Time Library Overview

14-2 Link Cable Library

Run-Time Library Overview CONFIDENTIAL

Link Cable Library 14-3

Overview

The Link Cable library (libcomb) provides services for connecting PlayStations with a link cable, which is
used by many games, especially combat games.

Communication is performed by the read() and write() functions. Both functions support asynchronous
mode, in which events occur when processing is complete, and synchronous mode, in which the functions
are terminated when communication is complete. The maximum communication rate is 2M (2073600) bps.
The communication method is asynchronous serial communication. Use _comb_control() to change the
communication rate.

Library and Header Files
To use the link cable library, you must link with the library file | i bconb. |'i b.

Source files must include the header file | i bconb. h.

Driver and BIOS

The link cable library consists of the link cable driver and the link cable BIOS.

Link Cable Driver
The link cable driver allows you to use Standard C input/output functions.

To install the link cable driver, call AddCOMBY(). To remove it, call DelCOMB(). Opening the sio device
without installing the driver will cause an error.

Table 14-1: Link Cable Driver

ltem Contents
Device name sio
Block size 1,2,4,8 bytes
Asynchronous write is a 1 byte unit
Asynchronous mode Specified in the O_NOWAIT macro on opening

Events
The following events occur with the input/output of the driver.

EvSplOEW and EvSpIOER occur after sending asynchronous input/output requirements. EvSpERROR
occurs in both synchronous reading and asynchronous reading.

Table 14-2: Events

Cause descriptor Event type Contents

HwSIO EvSpIOEW Completion of asynchronous writing
EvSpIOER Completion of asynchronous reading
EvSpERROR Read error

EvSpTIMOUT Timeout in synchronous reading/writing

CONFIDENTIAL Run-Time Library Overview

14-4 Link Cable Library

Wait Callback

During the processing of synchronous reading/writing of the preceding data a test software loop of the
serial controller status is executed. The Wait callback function is called during this loop. The callback
function is not registered in the default state.

_comb_control (4,0,func) sets func() as a callback function. It must meet the following specifications:

Synt ax I ong func (Il ong spec, unsigned |ong count)

Ar gunent spec 1l:during sychronous read 2:during synchronous wite
count current |ocation of internal counter

Ret urn Val ue Returns 0 when the wait loop is tinmed out and

returns 1 when the wait continues

The callback function registration can be cancelled by _comb_control(4,0,NULL).

Termination Conditions for Synchronous Input/Output

A synchronous read terminates when the specified number of characters are received. It can also terminate
when a parity overrun frame receiving error is detected or when the wait callback function returns a
prescribed value. In either case a unit-number of receiving characters is returned.

A synchronous write terminates when the specified number of characters are transmitted. It can also
terminate when the wait callback function returns a prescribed value.

Interrupt and Read/Write Functions

Most libcomb functions are designed never to enter a critical section, and it is possible for them to be
called within an event handler. Note: since single-threaded operation is assumed, perfect operation in a
multi-thread environment is not guaranteed.

Although there is no problem when the existing PlayStation library is operated by a single thread, the library
driver’s operation cannot be guaranteed when the original thread control is being carried out.

Number of Characters for Receiving

The PlayStation is equipped with an 8-byte receive buffer, and an interrupt can be set to occur when 1,2,4
or 8 bytes are received when using in the asynchronous read package.

It is also used as the number of characters for DSR/DTR handshaking in synchronous communication.

Note: When performing an asynchronous write, this value must be set to 1, since an interrupt is expected
for each byte transmitted.

Error Processing

When detecting each overrun parity frame receiving error during asynchronous input/output,
_comb_control(2,3,0) will cancel the asynchronous read will then issue the next EVSpERROR event.

During an event handler, only short processes such as flag setting should be done. Error processing itself
must take place in the main process.

Run-Time Library Overview CONFIDENTIAL

BIOS

Link Cable Library

The link cable BIOS provides precise driver control beyond that provided by standard C language
functions. The interface function is _comb_control(). The BIOS will work without installing the driver.

Following is the explanation of the _comb_control() function.

Table 14-3:

Synt ax:

Ar gunent s:

Command Summary

I ong _conb_control (unsi gned | ong cnd, unsigned |ong arg,
unsi gned | ong param

command
subcomand

param ar gunent

cmd

arg

Function

O O O O o o

O~ O N =+ O

Returns the serial controller status (see Table 14-4)
Returns the control line status (see Table 14-5)
Returns the communication mode (see Table 14-6)
Returns the communication rate in bps

Returns the "unit-number of characters for receiving”

Returns the amount of remaining data (bytes) from
asynchronous input/output during processing.

If the param is O it is asynchronous write, if 1 it is asynchronous
read.

Returns an asynchronous input/output request whether it
registered or not.

If it has been registered, it will return 1. Others will return 0.

If the param is O, it is asynchronous write, if 1 it is asynchronous
read

—_ a4 a4 a4

M~ WO N =+ O

System reserved

Sets the value of param as the control line status (*2)
(Reserved)

Sets the value of param as the communication rate by bps

Sets the value of param as the "unit-number of characters for
receiving"

Resets the serial controller.
Controller status, communication mode and communication
speed are saved.

Clears the bits related to the driver status error. Includes a
function which indicates the completion of the interrupt
processing to the driver.

Cancels the asynchronous writing
Cancels the asynchronous reading

When paramis 1 RTS is made 1.
When param is 0, RTS is made 0.

If (CTS==1) 1 is returned, the others return 0

The param value is considered to be the pointer to the function
and is registered as the pointer to the wait callback function.
The callback function pointer values up to that point are returned

CONFIDENTIAL Run-Time Library Overview

14-5

14-6 Link Cable Library

Table 14-4: Driver Status

bit Contents

31-10 Undefined

1: Interrupt is ON

1: CTS is ON

1: DSRis ON

Undefined

: Frame error occurrence

: Qverrun error occurrence

: Parity error occurrence

: No sending data

: Possible to read the receiving data
: Possible to write the sending data

O = N W > 00O N 0 ©

G U U G

Table 14-5: Control Line Status

bit Contents
31-2 Undefined

1 1: RTS is ON
0 1: DTRis ON

Table 14-6: Communication Mode

bit Contents
31-8 Undefined
7,6 Stop bit length
01:1
10:1.5
11:2
5 Parity check(2) 1: odd number O: even number
4 Parity check(1) 1: enabled
3,2 Character length
00:5 bits
01:6
10:7
11:8
1 1 at all times
0 0 at all times

Run-Time Library Overview CONFIDENTIAL

Link Cable Library 14-7

Serial Controller

The device that drives the link cable connector is a serial controller that supports asynchronous
communication. It has a 1-byte transmission buffer and an 8-byte receiving buffer. It has two sets of control
lines: DTR/DSR and RTS/CTS. Both are used for synchronous read()/write().

Table 14-7: Control Line

Transmission Name Receiving Name Receiving Function ~ Transmission Interrupt

DTR DSR Unusable during None
communication

RTS CTS Receiving functions None
automatically halt
when OFF

Communication Specifications

Communication specifications can be selected from the following settings:

Table 14-8: Communication Specifications

ltem Range of Values Default settings
Character Length 8 bits 8 bits

Stop Bit 1-2 bits 2 bits

Parity Check None Disabled

Communication Rate 1~2073600bps (2073600 divisor only) 9600 bps

Control Line Transition
The driver operates DTR (DSR for receiving) and RTS (CTS for receiving) as follows:

Table 14-9: Control Line Transition

Driver Operation DTR RTS
Power On (No other PlayStation or other PlayStation

power supply off) 1 1

(Other PlayStation present, driver not initialized) 0 0
Driver Initialization

AddCOMBY): 0 0

Synchronous Write
open (:sio”, O_WRONLY); - -
write(...); - -
write completion - -
close(); - -
Synchronous Read
open (“sio”, O_RDONLY); -
read (...) -
read completion -
close(); - -

o —

CONFIDENTIAL Run-Time Library Overview

14-8 Link Cable Library

Driver Operation DTR RTS
Asynchronous Write
open(“sio”, O_WRONLY/NOWAIT) - -
write (...); - -

transmission interrupt occurrence - -
transmission interrupt completion - -
write completion - -
close(); - -
Asynchronous Read
open(“sio”, O_RDONLY/O_NOWAIT); - -
read(...); -
Received interrupt occurrence -
Received interrupt completion -
Read completion -
close(); - -

QO =+ 4 4

Programming Hints

Detecting the Other PlayStation’s Connection (1)

When the link cable is not connected, or when it is connected but the other PlayStation has no power, both
the DSR and CTS become 1. However, if the link cable is connected and the other PlayStation has power,
both DSR/CTS become 0; this does not change even after the driver has been installed according to
AddCOMBY). Since no internal operation is carried out as long as the DSR/CTS signal does not issue a
read, there is a method which by provisionally making either DTR or RTS 1 in the initialization process
immediately after AAdCOMBY() execution provides notification that the other PlayStation has completed
communication preparations. By enabling the other PlayStation to perform the same process, both sides
can confirm the completion of each other’s communication preparations. However, in order to prevent
influencing future read/write functions when using RTS, it must be returned to 0.

Detecting the Other PlayStation’s Connection (2)

When the link cable is disconnected during communication, or when the power to the other PlayStation is
turned off, it's necessary to use a detection algorithm that establishes a time restriction to detect the
occurrence of an unusual state in the other PlayStation.

A simpler method would use a wait callback to constantly monitor the other PlayStation’s responses and
infer the status of the other PlayStation from the existence of a response or its speed. However, this
information alone is insufficient to determine whether abnormal status of the other PlayStation results from
a lack of connection or from a communication error. If the status has not improved, even after exhausting
all countermeasures such as performing the transfer again, it's necessary to determine whether the
problem is a lack of connection. Either way, since there is no definitive way to detect the connection with
the other PlayStation, it is necessary to use a time restriction-based detection algorithm.

Run-Time Library Overview CONFIDENTIAL

Link Cable Library 14-9

Background Receiving by the Ring Buffer

The read function can be executed in a critical section. Therefore, by calling the read function in the
EvSpIOER event handler, the next asynchronous receiving request can be registered to the driver. The ring
buffer can easily receive in the background by operating the receive buffer pointer provided in the read
function.

Since the write function can also be carried out in a critical section, it is possible to package processing
such as a retransmitted request with the ring buffer operation code by testing the received data contents.

Slow Speed of Asynchronous Write

Asynchronous transmission carries the highest load in this library and driver operation. If receiving is not
given priority over transmission, a receive error such as an overrun can occur, and this is generally
attributable to a decrease in efficiency.

In principle it is unavoidable that the efficiency of asynchronous communication is lower than synchronous
communication. Of all the combinations (synchronous read/write and asynchronous read/write),
asynchronous write puts the heaviest load on the CPU. Because asynchronous write exhibits performance
at a lower baud rate, normal operation cannot be expected for transmissions which exceed 57600bps in
actual practice.

Lightest Overhead Transmission

To produce the lightest load on the CPU, divide data to be transmitted into 8-character packets, scattered
suitably within the code and transmitted by synchronous write. Since each write should conclude within a
definite time period, the timeout callback function sets the maximum waiting time for all write functions.
When the time limit is reached, the transmission is interrupted. Since the transmission end character
number for the point at which the interrupt occurred is obtained as the return value, the pointer which
shows the transmission data provided to the next write function revises the value to the original.

Unit-Number of Characters for Receiving with the Exception of One Character

When an asynchronous read request is issued as the value of the unit-number of characters for receiving
except for one character, data which does not satisfy the number of characters cannot detect the received
status driver. Since this status connects to deadlock depending on the transmission-side activity, it is
necessary to package the time out processing at the application level.

CONFIDENTIAL Run-Time Library Overview

14-10 Link Cable Library

Run-Time Library Overview CONFIDENTIAL

Chapter 15:
Extended Sound Library

Table of Contents

Overview
Library and Header Files

Score Data
SEQ Data Format
SEP (Sequence Package) Data Format

MIDI Support
Setting VAB Attribute Data Using Control Change
Using Control Changes to Set Repeating Loops within Music
Marking Function Using Control Changes
VAB Switching Using Control Change

Sound Data
VAG Format
VAB Format

Function Execution Sequence

CONFIDENTIAL

15-3
15-3

15-3
15-3
15-4

15-5
15-5
156-7
15-7
15-8

15-8
15-8
15-8

15-10

Run-Time Library Overview

15-2 Extended Sound Library

Run-Time Library Overview CONFIDENTIAL

Extended Sound Library

Overview

The Extended Sound library (lilbsnd) provides services that convert sound data so that it can be used by the
PlayStation. It can work with files created by the dedicated PlayStation Sound Artist Tool.

Libsnd provides functions for:

Accessing VAB (sound source) data.

Activating and terminating the sound system.

Handling music score (SEQ) data.

Producing single sound sound effects, rather than musical sound effects.
Setting the common attributes of each SPU voice.

Changing the attribute table in VAB data at run-time and applying effects to the allocated voice after
KeyOn.

Note: Libsnd is designed to use MIDI data. For sound effects and music which do not use MIDI data, use
of libspu is recommended since it is smaller and uses less overhead.

Library and Header Files

To use the extended sound library, your application must link with the file | i bsnd. |'i b.

Your source code must include the header file | i bsnd. h.

Score Data

In libsnd, music data is defined in the SEQ and SEP data formats.

SEQ Data Format

SEQ is a format 1 Standard Midi File (SMF) converted for use with the PlayStation. In the SEQ format, the
MIDI data structure track/chunk data is merged with the time order.

A single sound expression is the same as the SMF standard, that is:

status (1 byte)
data (number of bytes fixed according to status)
delta time (variable length expression, max 4 Bytes)

CONFIDENTIAL Run-Time Library Overview

15-3

15-4 Extended Sound Library

Figure 15-1: SEQ data format
Sound ID (4 bytes)
Version number (4 bytes)

Quarter-note resolution (2
bytes)

Tempo (3 bytes)
Rhythm (2 bytes)
Data

File end (3 bytes)

In SEQ, use running status and all note off messages should be note on messages with velocity 0. SEQ
format also supports the following status data used by MIDI.

* Noteon

* Note off

* Program change
e Pitch bend

The list below is for control change:

* Bank Change (0)

» Data entry (6)

* Main volume (7)

e Panpot (10)

* Expression (11)

* Damper pedal (64)

» External effect depth (91)
* Nrpn data (98, 99)

* Rpndata (100, 101)

* Reset all controllers (121)

Note: Control numbers are printed inside parentheses ()

SEP (Sequence Package) Data Format

A SEP is a package containing multiple SEQ data files. SEPs enable multiple SEQ data files to be managed
as one file. A maximum of 16 SEQ data files can be linked.

SEPs can be accessed by specifying the ID number returned when the SEP is opened, along with the SEQ
number of the SEQ data to be accessed. See the Run-Time Library 4.0/Reference for details of access-
related functions.

The SEP data format is illustrated below.

Run-Time Library Overview CONFIDENTIAL

Extended Sound Library 15-5

Figure 15-2: SEP data format

Sound 1D @ bytes)
Yarsion numesr (2 byvtes)

SEQ number (2 bytas) = 0
Cuaner-note resolution 2 Bwtes)
Tempo 3 bytes
Rhvthm (2 bytes)

Data s (ncl 3B ench @ bvies)
Data

SEG end (3 byted

SEQ number 2 bytes) = 1
Cuanter-note resolution 2 Ewtes)
Tempo 2 bvte s
Rhthim (2 byteg)

Data sBe (hol SEQ ench @ bndes)
Data

SEC end 3 bytes)
up to 18 BSEQE)

MIDI Support

Setting VAB Attribute Data Using Control Change

NRPN data that enables the setting of VAB attribute data is defined using the MIDI standard Control
Change message for the NRPN.

When using a sequencer to create an SMF file for defining VAB attributes, the following values should be

sent.
bnH 99 dat al (NRPN MSB)
bnH 98 dat a2 (NRPN LSB)
bnH 06 dat a3 (Data Entry)

The contents of datal, data2, and data3 are described below.

» Tone numbers range from O to 15.

» Avalue of 16 sets the attributes of all tones. Some values, such as reverb depth and feedback amount,
must be set for the entire SPU; they can’t be set for each tone or each MIDI channel.

* Reverb can be set only as on or off for each voice (i.e., each waveform). To make these settings, check
the reverb switches shown on the SoundDelicatessen ADSR setting screen. You can also use the
NRPN Mode setting to change from MIDI sequence in real-time.

CONFIDENTIAL Run-Time Library Overview

15-6 Extended Sound Library

Table 15-1: Data1-Data3 Contents

ATTRIBUTE Data1 (CC99) Data2 (CC98) Data3 (CC06)

Priority Tone Number 0 0~127

Mode ? 1 0~4 (9

Limit low i 2 0~127

Limit high ? 3 ?

ADSR (AR-L) ? 4 ?

ADSR (AR-E) ? 5 ”

ADSR (DR) ? 6 ”

ADSR (SL) ? 7 ?

ADSR (SR-L) ? 8 ?

ADSR (SR-E) ? 9 ?

ADSR (RR-L) ? 10 ?

ADSR (RR-E) ? 11 ?

ADSR (SR-+) ? 12 0~64: +
65~127:—

Vibrate time ? 13 0~255(*)

Portamento depth ? 14 0~127()

Reverb type 16 15 0~9 ("

Reverb depth 16 16 0~127

Echo feedback 16 17 ?

Echo delay time 16 18 ?

Delay delay time 16 19 ?

Vibrate depth Tone Number 21 0~127()

Portamento time ? 22 0~255(*)

Table 15-2:

(*) Mode Type

(*) Not currently supported
() Reverb Type (Refer to Sound Delicatessen DSP)

Data3 Mode Type

Number Mode

0 Off

1 Vibrate

2 Portamento

3 1&2 (Portamento and Vibrate on)
4 Reverb

Run-Time Library Overview

CONFIDENTIAL

Extended Sound Library 15-7

Table 15-3: Data3 Reverb Type (See Also Sound Delicatessen DSP)

Number Reverb Type
0 Off

1 Room

2 Studio A
3 Studio B
4 Studio C
5 Hall

6 Space

7 Echo

8 Delay

9 Pipe

Using Control Changes to Set Repeating Loops within Music
NRPN data may be used to implement a repeat function for sections within music.

The symbol "II:" identifies Loop1 and ":lI" identifies Loop2. Although the repeat function can be used any
number of times within one piece of music, it is not possible to embed a loop within a loop, such as
(Loop1 ... (Loop1' ... Loop2') ... Loop2).

Table 15-4: Looping Using Control Changes

ATTRIBUTE Data1 (CC99) Data2 (CCO06)
Loop1(start) 20 0~127 ()
Loop2(end) 30

(***) For continuous looping, set 127(0x7f).

Note: Don’t set repeat loops to the same Delta Time, because the data may be invalid. Depending on the
sequence, the order can shift when it is modified to SMF even if it was input in regular sequence.

Also, values become valid from the KeyOn immediately after the Data Entry is read in VAB attribute data
settings.

Marking Function Using Control Changes

NRPN data can be used to mark places in a song. When a library function detects one of these marks, it
calls the function registered for the mark. The marking format is shown below.

Table 15-5: Marking via Control Changes
Attribute Data1 (CC99) Data2 (CCO06)

Mark 40 Any value from 0~127
(Passed to callback function)

Note: Please set the reverb and repeat at only one point in the music score data. There is no need to set
them in each channel (track).

CONFIDENTIAL Run-Time Library Overview

15-8 Extended Sound Library

VAB Switching Using Control Change
Using bank change (CC 0) makes switching to any VAB possible.

The CC 0 must be able to use a VAB ID. Entering an incorrect VAB ID can cause malfunctions such as no
sound production.

Although a bank change generally sets CC 0 and CC 32, CC 32 can be omitted since it is ignored in libsnd.

Figure 15-3: VAB Switching Using Control Changes

Attribute datal (CC Q) data2 (CC 32)
VAB Change Any VAB ID from 0-15 Ignored

When not performing VAB switching, CC 0 and CC 32 should be deleted from the MIDI data in order to
avoid possible malfunctions. Setting the OutputMode -> Remove BankChange(#0) check to “ON” when
converting to SEQ with SMF2SEQ will allow bank change to be deleted from the MIDI data and converted.

Sound Data

Two data formats are used to define sound data, VAG format and VAB format.

VAG Format

This is a waveform data format for ADPCM-encoded sampled sounds, such as piano sounds and
explosions.

VAB Format

The VAB file format is designed to manage multiple VAG files as a single group. A VAB file contains all of
the sounds, sound effects, and other sound-related data actually used in a scene. Hierarchical
management is used to support multi-timbral (multi-sampling) functions.

Each VAB file is equivalent to a MIDI bank, and may contain up to 128 programs, which are equivalent to
MIDI patch changes. Each program can contain up to 16 tone lists. A tone list is a set of attributes for a
specific VAG. Also, each VAB file can contain up to 254 VAG files.

Since it is possible for multiple tone lists to reference the same waveform, users are able to set different
playback parameters for the same waveform.

A VAB format file is organized as follows:

Figure 15-4: VAB format and VAB header

VAB File

Program Attribute Table
(128 Programs)

Tone Attribute Table (128
x 16 VAG Header List)

VAG Data Body
(254 VAG Data)

Run-Time Library Overview CONFIDENTIAL

Extended Sound Library

The structure of a VAB header is as follows. It is possible to set each attribute dynamically using this
structure at the time of execution. Also, the VAB (Bank) editor can edit all values included in the VAB data
format header and can confirm the local memory usage by using the bank sound source at execution.

VAB Header

struct VabHdr

Program Attributes

| ong

| ong

| ong

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

I

| ong
short
short
short
short
char
char
char
char
| ong

struct ProgAtr {

Tone Attributes

unsi gned

unsi gned
unsi gned
unsi gned
unsi gned
char

short

unsi gned
unsi gned

h

struct VagAtr

t han

unsi gned

unsi gned

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char

char
char
char
char

| ong
| ong

char

char

char
char
char
char
char
char

char
char
char
char
char
char
char
char

form

ver;

id;

fsize;
reservedO;
ps;

ts;

VS;

mvol ;

pan;
attrl;
attr?2;
reservedl;

t ones;

mvol ;
prior;
nmode;
npan;
reser vedO;
attr;
reservedl;
reserved?;

prior;

node;

vol ;
pan;
center;
shift;
mn;
max;

vi bW

vi bT;
por W
porT;

pbmi n;
pbmax;
reservedl;
reserved?2;

/ *al ways “VABp”*/

/*format version nunber*/

[*bank | D*/

[*file size*/

/*system reserved*/

/*total nunber of programs in this bank*/
/*total nunber of effective tones*/
[*nunber of waveforns (VAG */
/*mast er vol ume*/

/*master pan*/

/*bank attribute*/

/*bank attribute*/

/*system reserved*/

/*nunber of effective tones which
conpose the progrant/

/ *program vol ume*/

/*programpriority*/

/ *program node*/

/ *program pan*/

/*system reserved*/

/*program attri bute*/

/*system reserved*/

/*system reserved*/

/*tone priority (0 — 127); used for
controlling allocation when nore voices

can be keyed on are requested*/
/*tone node (0 = nornal; 4 = reverb
applied */
/*tone vol une*/
/*tone pan*/
/*center note (0~127*/
/*pitch correction (0~127,cent units)*/
/*mnimumnote limt (0~127)*/
/*maxi mum note limt (0~127
provided mn < max)*/
/*vibrato width (1/128 rate, 0~127)*/
/*1 cycle time of vibrato (tick units)*/
/*portanento width (1/128 rate, 0~127)*/
/*portanento holding time (tick units)*/
/*pitch bend (-0~127, 127 = 1 octave)*/
/*pitch bend (+0~127, 127 = 1 octave)*/
/*system reserved*/
/*system reserved*

CONFIDENTIAL

Run-Time Library Overview

15-9

15-10 Extended Sound Library

unsi gned short adsr1; / * ADSR1*/

unsi gned short adsr?2; | * ADSR2* /

short pr og; / *parent progrant/
short vag; /*wavef orm (VAG used*/
short reserved[4]; [/*systemreserved*/

b

Function Execution Sequence

When using libsnd, execute the functions in the following order. (See sample programs for more details.)

1) Initialization
Initialize the system with Ssinit(). Use SsSetTableSize() to maintain the SEQ attribute data area.

2) Tick Mode Setting
Set the tick mode with SsSetTickMode().

3) Opening Data

* VAB data: SsVabOpenHead()-->SsVabTransBody(),SsVabTransCompleted()
* SEQ data: SsSeqgOpen()

e SEP data: SsSepOpen()

4) Starting the Sound System
Call SsStart() to start the sound system. Opening Data above may be executed after SsStart().

Playback of SEQ data is dependent on proper callback timing. Other callback processing (such as CD
reading) can cause the tempo of the music to become uneven unless the following methods are followed:

Case A: not using VSyncCallback()

1. Define TICK mode as SS_TICK60
SsSet Ti ckibde (SS_TI CK60) ;

2. Use SsStart2() instead of SsStart()

/*SsStart(); /* tenpo changes */
SsStart2();

Case B: using VSyncCallback()

1. Define TICK mode as SS_NOTICK
SsSet Ti ckMbde (SS_NOTI CK) ;

2. Call SsSeqCalledTByT() within the callback function set by VSyncCallback().

int foo (void)

{
'S.s'SeqCaI | edTByT();

}

Set the processing load corresponding to the position of SsSeqCalledTByT() in the function.
mai n()
{
vsyncCal | back (f 00):

}

Run-Time Library Overview CONFIDENTIAL

Extended Sound Library 15-11

Either solution will currently work for this problem, but from this point on, it would be better to use a TICK
mode less than SS_TICK120.

5) Required Processing

Set main volume. Execute required processing. Use libcd function CdMix() to make CD(DA/XA)
stereo/monoaural settings. Use SsSetMono() and SsSetStereo() to make SPU (SEQ, SEP, VAB, VAG)
stereo/monaural settings.

6) Closing Data

» VAB data: SsVabClose()
* SEQ data: SsSeqClose()
» SEP data: SsSepClose()

7) Halting the Sound System
Halt the sound system with SsEnd).

8) Terminating the Sound System
End the sound system with SsQuit().

CONFIDENTIAL Run-Time Library Overview

15-12 Extended Sound Library

Run-Time Library Overview CONFIDENTIAL

Chapter 16:
Basic Sound Library

Table of Contents

Overview 16-3
Library and Header Files 16-3
VAG Format 16-3
Header 16-3
Intro 16-4
VAG Body 16-4
SPU IRQ Clear Block 16-4
Voice Audio Source 16-4
Noise Audio Source 16-5
LFO in Intervals 16-5
Reverb 16-5
Data Transfer Between Memory and Sound Buffer 16-6
Interrupt Request for Sound Buffer Access 16-8
Sound Buffer Memory Management 16-8
Mixing CD and External Digital Input 16-8
Transferring Data Decoded by SPU to Main Memory 16-9
Initializing, Starting and Stopping SPU Processing 16-9
Basic Operations 16-9
Waveform Data Processing 16-9
Four States in the SPU Streaming Library 16-10
Callback Functions 16-10
Stream Processing 16-11
Actual Flow of Stream Processing 16-12
Completion 16-15
Basic Sound Library and Extended Sound Library Common Uses 16-15
Initialization 16-15
Sequence Data 16-15
Sound Generation/libsnd Voice Manager Function 16-15
Transfer to the Wave Pattern Data Sound Buffer 16-15
Sound Buffer Memory Control and Reverb 16-16
Applying Reverb to Voices Using Libspu and Libsnd 16-16
Noise during CD-DA/XA playback 16-16

CONFIDENTIAL Run-Time Library Overview

16-2 Basic Sound Library

Run-Time Library Overview CONFIDENTIAL

Basic Sound Library

Overview

The basic sound library (libspu) directly controls the PlayStation sound play processor (SPU). It controls the
lower levels of the extended sound library (libsnd), and provides individual functions for operations such as
transferring non-music data (texture data, etc.) to the sound buffer.

Libspu does not have time control functions; they are provided by libapi.

It is necessary to insert the SPU processing unit of at least 1/44100 seconds of space in order to perform
function calling for the setting of identical functions.

Library and Header Files

To use the basic sound library, your application must link with the file | i bspu. |'i b.

Your source code must include the header file | i bspu. h.

VAG Format

VAGs are compressed audio data arranged in 16-byte blocks.

Note: AIFF2VAG for the PC creates files in an Intel or little-endian format, while AIFF2VAG for the Mac
creates files in a Motorola or big-endian format.

Header

All VAGs have a 48 byte header, which must be removed for playback. This header should not be removed
before converting VAGs to VABs on the Mac or PC; otherwise, improper conversion will occur.

ID - 4 bytes. 'VAGp’, identifies the file as a VAG.
Version - 4 bytes. Identifies which version of AIFF2VAG created the file.
— Mac converters

v1.3 ‘00000002’
vli.6+ ‘00000003’

— PC converters

-v1.8 ‘00000000
v2.0+ ‘00000020’

System reserved - 4 bytes.
Data size - 4 bytes. The data size of the file in bytes.

Sampling frequency - 4 bytes. The sampling frequency of the AIFF. Can be used to determine the pitch
at which to play the VAG. pitch = (sampling frequency <<12)/44100L Ex: 44.1kHz=0x1000
22.05kHz=0x800 etc.

System reserved - 12 bytes.
Name - 16 bytes. File name, used by Sound Delicatessen.

CONFIDENTIAL Run-Time Library Overview

16-3

16-4 Basic Sound Library

Intro

All VAGs must have a lead-in of 16 bytes of zero data. This data initializes the SPU in order to prevent
clipping noises.

VAG Body

The VAG format and compression method is Sony proprietary information. The body of the VAG will be
compressed approximately 3.5-1 by AIFF2VAG.

SPU IRQ Clear Block

One-shot VAGs will be created with an additional 16-byte block attached to the end. The block is used to
prevent unnecessary SPU interrupts or SPU free-run. The block reads as follows: “00077777 77777777
777777 777777777 or “00070000 00000000 OOO00000 00000000.” Looping VAGSs do not contain this
block.

If the SPU IRQ is not being used, this block can be removed. Currently, the functions which use the SPU
IRQ are: SpuGetIRQ(), SpuGetIRQAddr(), SpuSetIRQ, SpuSetlIRQAddr(), and SpuSetIRQCallback(). The
SpuStreaming library [all calls beginning with SpuSt...()] also uses the SPU IRQ.

If none of these functions will be used in the code, the SPU IRQ clear byte block at the end of one-shot
VAGs can be removed. This frees up SPU RAM (up to 4K in a single VAB), slightly reduces CD load time
(up to 1/75 sec at double speed for a single VAB), and very slightly reduces SPU load time (while the SPU
DMA is slow, it is much faster than the CD).

Be sure to change the data size in the VAG header to reflect the fact that these bytes have been removed
BEFORE building VABs with truncated VAGs.

Also, keep in mind that your SPU IRQ safety net has been removed with the removal of the clear bytes. Use
this information wisely.

Voice Audio Source

Libgpu can control the following attributes, which may be set individually for 24 ADPCM audio sources
(voices):

* Sound volume (can set L/R independently)

* Pitch

* Address of waveform data in sound buffer

* Envelope (ADSR)

* Loop point

Key on/key off can also be set independently for each of the 24 voices.

These attributes may be changed while key on is in effect and sound is being generated. Therefore, it is
possible to continuously vary the sound interval during sound generation and to repeatedly generate sound
while changing the loop point of waveform data having a loop point.

Run-Time Library Overview CONFIDENTIAL

Basic Sound Library 16-5

Noise Audio Source

The SPU has one noise generator, which may be set and used for each voice instead of sound buffer
waveform data. Use SpuSetNoiseVoice() to determine which voices will playback the noise generator. It has
effects such as envelope, and it can produce a noise sound effect by varying the auditory sound interval
(noise clock) while sound is being generated. SpuSetNoiseClock() can be used to change the sound
interval. SpuGetNoiseClock() returns the value of the interval and SpuGetNoiseVoice() returns the voices
currently using the noise generator.

LFO in Intervals

By using adjoining voices, the SPU can produce a Low Frequency Oscillator (LFO) effect in an interval. Use
SpuSetPitchLFOVoice() to create this effect, which can be expressed by the equation below. Be aware that
two voices are used to generate one tone.

NewPi tch(n) = (1 + V(n-1)) * Pitch(n)

Table 16-1: LFO Control Expression Format

NewPitch(n) Voice (n) final pitch
V(n-1) Voice (n-1) volume (changed according to time)
Pitch(n) Pitch originally set for voice (n)

Reverb

Reverb is provided using various types of templates. These templates have many parameters that can be
adjusted to vary the effects.

Reverb uses the sound buffer as its work area, with the starting address varying according to each
parameter, which can be set inSpuSetReverbModeParam(). Since this is also prepared for use as a
template, the area before the offset address may be used as a waveform data area.

Only one type of reverb can be active at a time. Reverb for individual voices may be turned on or off using
SpuSetReverbVoice(); it also returns the voices that currently have reverb set. Reverb may also be applied
to CD input and external digital input by using SpuSetCommonAttr() and setting the members
SpuCommonAttr.cd.reverb or SpuCommon.ext.reverb.

Do not set the reverb depth with SpuSetReverbModeParam() or SpuSetReverbDepth() until reverb is
actually required, or it will be necessary to clear the reverb work area with either
SpuSetReverbModeParam() or SpuClearReverbWorkArea() to avoid noise being generated.

If you intend to use reverb, set the mode well in advance, not just before use. When you set the mode, the
reverb depth goes to 0.

The order in which you perform reverb setup should be:

SpuSetReverb() followed by either

1. SpuSetReverbModeParam() (specifying Mode/Feedback/Delay/Depth)

or

2. SpuSetReverbModeParam() (specifying Mode/Feedback/Delay)
SpuSetReverbDepth() (specifying Depth)

CONFIDENTIAL Run-Time Library Overview

16-6 Basic Sound Library

In order for SPU memory management to work properly with reverb, the following relationships should be
applied:

1.

Cases in which reverb work area has been reserved with SpuReserveReverbWorkArea (SPU_ON)

SpuMalloc()/SpuMallocWithStartAddr(). This method should be used to save an area of SPU RAM for
future reverb use.

Depending on the mode, you can allocate an area of size (Ox7ffff - work area size), starting from
address 0x1010.

Cases in which a work area has not been reserved with SpuReserveReverbWorkArea (SPU_OFF)
SpuMalloc()/SpuMallocWithStartAddr()

Area can be allocated in the entire sound buffer area, addresses 0x1010 to Ox7ffff, unless
SpuSetReverb(SPU_ON) has been called. In this case, even if reverb mode is SPU_REV_MODE_OFF,
128 bytes will be used as a reverb work area.

SpuSetReverb()

If an area with a size corresponding to the mode being used has been allocated as the reverb work
area in another area with SpuMalloc()/SpuMallocWithStartAddr(), then SpuSetReverb (SPU_ON) will be
invalid.

Regardless of the current reverb work area allocation, when a change is to be made to reverb mode,
SpuSetReverbModeParam() analyzes whether or not it can allocate the area required as a work area,
based on information from the sound buffer memory management mechanisms, and if possible
reserves the area at that time. If the area cannot be allocated, SpuSetReverbModeParam() returns
without reserving the area.

If you execute SpuMalloc()/SpuMallocWithStartAddr() when there is no reverb work area reserved by
SpuReserveReverbWorkArea(), and afterward attempt to reserve the reverb work area again with
SpuReserveReverbWorkArea(), it analyzes whether or not it can acquire a reverb work area of the size
needed by the current reverb mode, based on information from the sound buffer memory management
mechanisms, and reserves that region at that time if that area can be allocated. If that area cannot be
allocated, it returns without reserving any work area.

The size of the reverb work area depends on the reverb mode. The only time that the reverb work area
size changes is when you set the mode with SpuSetReverbModeParam).

The behavior of SpuMalloc()/SpuMallocWithStartAddr(), SpuReserveReverbWorkArea(), and
SpuSetReverb() change when the mode setting changes.

When exiting a program that uses reverb, you must do the following:

Basic Sound Library

#i ncl ude <libspu. h>

SpuRever bAttr r_attr;
r_attr.mask = (SPU_REV_MODE);
r_attr.node = SPU REV_MODE OFF;

SpuSet Rever bMbdeParam (& _attr);
SpuSet Reverb (SPU_OFF); /*reverb of f*/

Otherwise, noise may sometimes occur the next time the program is executed.

Data Transfer Between Memory and Sound Buffer

You can transfer waveform data from main memory to the sound buffer with SpuWrite() and from the sound
buffer to the main memory with SpuRead().

CONFIDENTIAL

Run-Time Library Overview

Basic Sound Library

There are two transfer modes:

» DMA transfer (Write/Read). Transfers asynchronously using the DMA controller, so the CPU is able to
do other processing during the transfer. The function SpulsTransferCompleted() must be called after
DMA transfer.

e |/O transfer (Write-only). Uses the CPU, so other processing cannot be performed during the transfer.
You must select DMA transfer if you are transferring data while continuing playback. Since 1/O transfer
blocks CPU processing, SpulsTransferCompleted() always returns 1, and need not be called.

The default mode is DMA transfer. Use SpuSetTransferMode() to change modes; use
SpuGetTransferMode() to check transfer mode. SpuSetTransferStartAddr() must be called before writing or
reading SPU RAM. SpuGetTransferStartAddr() returns the transfer address.

DMA transfer is always used when transferring from the sound buffer to main memory, so it is not
necessary to set the transfer mode explicitly. However, the main memory address which stores transferred
data or receives data must be the address of a variable allocated for a large area, or the address of a
variable allocated to a heap area by malloc() or a similar function. It cannot be the address of a stack region
or an auto variable declared within a function.

Note: If CDInit() is not called before Spulnit(), waveform transfer completion may fail, especially when
SpulsTransferCompleted(SPU_TRANSFER_WAIT).

To clear an area in SPU RAM, use SpuWriteQ(). To transfer in steps, use SpuWritePartly().

Active memory management is not performed in the sound buffer. So, data transfer should avoid the areas
listed below. Data transferred to these areas cannot be used as waveform data.

* (0x00000 ~ Ox0O0fff -- SPU decoded data transfer region
* (0Ox01000 ~ Ox0100f -- System reserved region
» After the reverb work area offset (starting) address

Figure 16-1: Sound Buffer Memory Layout

SPU Decode 0x00000
Data Region

0x01000
SPU IRQ Clear Block
(System reserved) 0x01010

Waveform data
transferable region

&Reverb offset

Reverb

Work area
... may vary according
to reverb type

Ox7ffff

CONFIDENTIAL Run-Time Library Overview

16-7

16-8 Basic Sound Library

Interrupt Request for Sound Buffer Access

The sound buffer may be accessed for operations besides data transfer. The SPU is also able to access
the sound buffer at any time while decoding in order to output the transferred waveform data as sound.

This optional access to the sound buffer is performed by generating a hardware interrupt (interrupt request)
when access is made to a specific address. The specified address is set in SpuSetlIRQAddr(). It is also
possible to specify a function to be called in response to this interrupt request by calling the function
SpuSetIRQCallback(). SpuSetIRQ() must also be called in order to enable or disable the IRQ. SpuGetIRQ()
will return whether or not the interrupt has been enabled and SpuGetIRQAddr() will return the interrupt
request address.

Sound Buffer Memory Management

Sound buffer memory management is limited. It manages a table of occupied memory and reports only that
information. Simple sound buffer memory management is possible using this information. The following
functions manage SPU memory:

* SpulnitMalloc() sets up the memory management table.

* SpuMalloc() allocates an area in SPU RAM.

* SpuMallocWithStartAddr() allocates an area in SPU RAM with a specific starting address.

* SpuFree() deletes the information from the designated area in the memory management table.

Mixing CD and External Digital Input

The SPU has the following two systems for external input:
* CDinput
* External digital input

The sampling frequency of both is 44.1 kHz. Sound from these inputs and SPU output may be mixed
digitally. The input may also be assigned to reverb.

This example sets up the CD volume:

#i ncl ude <libspu. h>

SpuComonAttr attr;

attr.msk = (SPU_COVWON _MWCOLL | /* master volune (left) */
SPU_COMVON_WOLR | /* master volune (right) */
SPU_COMMON_CDVOLL | /* CD input volume (left) */
SPU_COMVON_CDVOLR | /* CD input volume (right) */
SPU_COMVON_CDM X) ; /* CD input on /off */

/* set master volune to md-range */
attr.mvol . left = Ox1fff;
attr.mvol .right = Ox1fff;

/* set CD input volune to nid-range */
attr.cd.volune.left = Ox1fff;
attr.cd.volune.right = Ox1fff;

/* CD input ON */

Run-Time Library Overview CONFIDENTIAL

Basic Sound Library 16-9

attr.cd. mx = SPU_ON,

/* set attributes */
SpuSet CommonAttr (&attr);

Please note that calling Spulnit() resets the CD volume to zero. The proper order of initialization is CDInit(),
then Spulnit(), then use the above example to reset the CD volume.

Transferring Data Decoded by SPU to Main Memory

The SPU writes to the sound buffer’s first 0x1000 bytes, 16 bits at a time at each clock (44.1 kHz) pulse.
Data is written after CD input volume processing and after Voice 1 and Voice 3 envelope processing. The
individual sound buffers are each 0x400 bytes, divided into two halves. By deciding which buffer region to
write 1o, it is possible to write up to 100 samples (100 / 44100 = 0.0022 ... seconds) of data at one time.
SpuReadDecodeData() will perform this transfer.

Initializing, Starting and Stopping SPU Processing

» Call Spulnit() before any other libspu functions.

* In no particular order: Transfer data to SPU RAM; Set up reverb; Set main volume, CD input, and
external input with SpuSetCommonAttr().

» Set voice attributes using SpuSetVoiceAttr().

* Key On voices using SpuSetKey() or SpuSetKeyOnWithAttr(); all main processing.

e Call SpuQuit() to stop all SPU processing.

* SPU Streaming Library

The PlayStation SPU originally played back only waveform data that could fit in SPU RAM (maximum

512 K). The SPU streaming library provides for playback of waveforms larger than the sound buffer, by
transferring sections of data to designated areas in SPU RAM continuously during playback.

Note: The functions explained in this section are included in the basic sound library (libspu), and are
separate from the libcd streaming library

Basic Operations

Waveform data is loaded into main memory and transferred to the SPU sound buffer for playback. With the
SPU streaming library, only part of the data needs to be loaded at once. The data is a VB file containing
only one VAG data, i.e. a VAG file that does not include the 48-byte header.

A stream buffer is allocated in SPU RAM for each voice used by the library. When the library uses more
than one voice (up to 24 can be used), the size and pitch of the stream buffers must be the same for all
voices.

The SPU plays back the waveform data via continuous transfer from main RAM to the stream buffer.

Waveform Data Processing

The library can handle waveform (VB) data larger than SPU RAM, and all parts of the waveform data need
not reside in main RAM at the start of streaming.

At any point in the process, RAM must contain waveform data for each stream at least half as large as the
stream buffer. When the transfer of the processed waveform data is requested, by specifying the start

CONFIDENTIAL Run-Time Library Overview

16-10 Basic Sound Library

address and the attributes of the necessary part of the waveform data, the library is informed of the
continuation of the stream processing.

The waveform data used is being partly rewritten at the time of transferring. Internal marks for the library are
being created in the waveform in main RAM. Since the waveform has been altered for the library, it is
recommended that sections of the waveform used by the library be reloaded into main RAM from the CD
before transfer to SPU RAM for a second time.

During transfer, the contents of all waveform data in the main memory are rewritten by stream buffer half-
size units and destroyed.

Four States in the SPU Streaming Library

There are four states in SPU streaming:

Idle
No streams are being processed; therefore, the library puts no load on the system.

The idle state follows the termination state.

Preparation

To eliminate time-lag of sound generation, some waveform data for each stream must be transferred into
SPU RAM before stream processing begins. The data must be half the size of the stream buffer. The end of
data transfer in the preparation state can be detected by the preparation finished callback function.

Transfer

This state is where sound generation is actually performed for the designated voice. Half of the stream
buffer is processed, and end of processing can be detected by the transfer finished callback function.

Requests for the preparation state for other voices can be performed in this state, but the state does not
change to preparation. The preparation for these other voices is performed in the transfer state.

Termination
Termination is designated for all the streams, and the transfer is completed. Any requests for preparation or
transfer are not accepted. On completion, processing returns to the idle state, and the next request for
preparation can be accepted.
Figure 16-2: Four States and their Transitional States

—® |de —® Preparation —® Transfer —® Termination —’

Callback Functions

The library provides three types of callback functions. Each function is called with the same timing in
multiple streams. The requested stream can be recognized by the argument of the callback function.

Preparation Finished Callback Function

Called when the initial transfer is completed for the preparation state. If the stream is to be played
immediately after preparation, the attributes for the next transfer must be set here.

Transfer Finished Callback Function

Called when the transfer of waveform data half as large as the stream buffer is completed in the transfer
state. In this function, the attributes for the next transfer must be set.

Run-Time Library Overview CONFIDENTIAL

Stream Finished Callback Function

Called when playback of the termination-designated stream is completed.

Figure 16-3: Four Callback Functions and Transitional States

[Idle]

[Preparation]

[Transfer]

Stream A
is completed

Last stream
is completed

B —

[Termination]

[Idle]

Stream Processing

Stream Preparation and Start

«—— SpuStTransfer (SPU_ST_PREPARE)

Preparation finished callback function

SpuStTransfer (SPU_ST_PLAY)
(Transfer to the stream buffer)
Transfer finished callback function
(Transfer to the stream buffer)

Transfer finished callback function

(Transfer to the stream buffer)
Transfer finished callback function
(Transfer to the stream buffer)
Transfer finished callback function

For the stream A
Stream finished callback function

(Transfer to the stream buffer)
Transfer finished callback function

(Transfer to the stream buffer)
Transfer finished callback function

Stream finished callback function

Basic Sound Library

Since all streams are processed at the same time, they are all transferring data to the same half of the
stream buffer and playing back from the other half of the stream buffer. This can affect the way that new

streams are added.

Preparation for each stream is always done by transferring waveform data to the first half of each stream
buffer. If preparation is requested in the idle state, it is processed promptly. However, if a new stream’s
preparation is requested in the transfer state, it must wait until the other streams are ready to transfer data
to the first half of their buffers. Therefore, a lag occurs; the larger the stream buffer, the longer the potential

lag for this initial data transfer.

When data transfer to the second half of a stream buffer begins, playback of the first half of the stream
buffer begins. If transfer to the second half of the stream buffer is requested during preparation, it is

CONFIDENTIAL

Run-Time Library Overview

16-11

16-12 Basic Sound Library

processed promptly. However, if transfer to the second half of a new stream buffer is requested during the
transfer state, playback doesn’t occur until the other streams transferring to the second half of the stream
buffer are finished. As in the case of preparation, the lag time for playback lengthens as the stream buffer

Size increases.

Attributes for the Next Transfer

You should specify the following attributes for the next transfer in each stream in the transfer finished

callback function:

* The start address in main RAM of the waveform data area (half as large as the stream buffer) for the

next transfer.

» If the stream is completed in the next transfer, specify the termination in status and specify the size of
the data for the last transfer (half the stream buffer size or less.)

Stream Termination

Termination of each stream is specified by setting termination for the attribute status and the size of the
last-transferred waveform data (half as large as the stream buffer or less) when setting the attributes for the
next transfer. The stream is terminated when playback of the stream specified in this setting is completed.

Key on/Key off

Only sound generation (key on) is done automatically, at the start of streaming. Sound cancellation (key off)
must be done by the program. Be sure to perform key off after stream termination; otherwise the state of
the sound library may be unstable. Since this method may result in some lag time between desired key off
and actual processing completion, the recommended solution is to set the volume of the voice to 0.

Actual Flow of Stream Processing

A typical flow of SPU streaming is as follows:

Initialization
Initialize the library with SpuStinit().

SpuSt Env *st env;
stenv = SpuStlnit (0);

It returns the structure SpuStEnv, shown below.

typedef struct {
char st atus;
char padil;
char pad2;
char pad3;
I ong | ast_si ze;

unsi gned | ong buf _addr;

unsi gned | ong data_addr;

} SpuSt Voi ceAttr;

typedef struct {
I ong si ze;

long low priority

SpuSt Voi ceAttr voice [24];

} SpuSt Env;

Run-Time Library Overview

/[*stream st at us*/

[* paddi ng*/

/ * paddi ng*/

/ * paddi ng*/

/*the size of last transfer at
term nation stage

(last_size <= (size | 2))*/
/*The start address of stream
buffer in SPU RAMW/

/*The start address of SPU
stream ng data in main RAM/

/*The size of stream buffer*/
/*Priority of the stream added in lib
3.6*/

CONFIDENTIAL

Basic Sound Library 16-13

Streams are processed by specifying the attributes for this structure.

Attribute Initialization

The SpuStEnv structure member size sets the size of the stream buffer for all streams. It should be chosen
carefully to meet the needs of the program, considering the available area in SPU RAM and the number of
stream buffers needed. As the size of the stream buffers increases, the lag time for new streams to be
processed and for termination of streams increases. However, with smaller stream buffers, more time is
consumed by callbacks, from both the SPU DMA during each data transfer and from the SPU IRQ when
the end of each stream buffer is reached and playback needs to continue from the start of the stream
buffer.

Example:
st env->si ze = 0x8000;

low_priority is also a member of the SpuStEnv structure. Set SPU_ON to lower the priority level of SPU
streaming processing compared to other processing (e.g. graphics processing will have higher priority than
SPU streaming). The default value is SPU_OFF, where the priority level is not lowered.

The attributes that must be initialized for each stream are:

1. The start address of the stream buffer
= voice[].buf _addr in SpuStEnv structure

Example:
unsi gned | ong buf _addr;
if ((buf_addr = SpuMalloc (0x8000)) == -1) {
/* ERROR */
}

stenv->voi ce [n].buf_addr = buf_addr;
2. The start address in main RAM of the waveform data to be transferred during the preparation stage.
= voi ce[].data_addr in SpuStEnv structure
Example:
stenv->voi ce [n].data_addr = 0x80yyyyyy;

The subscript (n in the above example) of the array stenv->voice corresponds to the voice number.

Callback Functions Setting
All the callback functions have the following syntax:

SpuSt Cal | backProc cal | back_proc (unsigned |ong voice_bit, |ong c_status)

When the function is called, the voices to be processed in each callback function are passed to voice_bit
by setting the bits SPU_OCH to SPU_23CH. The state in which the callback function is called is passed to
the argument c_status. The program must analyze these arguments and process them appropriately.

At a minimum, the transfer finished callback function must be called in order to process the stream. This
function specifies the start address of the next section of waveform data to be transferred, and when ready
to terminate, species information about terminating the stream.

CONFIDENTIAL Run-Time Library Overview

16-14 Basic Sound Library

Voice Setting

The attributes for each streaming voice are set. For the start address of the waveform data in the voice
attributes, the same value as the start address of the stream buffer is set.

Example:
SpuVoi ceAttr s_attr;

s_attr.voice = SPU _3CH;
s_attr.addr = stenv->voice [3].buf_addr;

SpuSet Voi ceAttr (&s_attr);

Preparation for the Stream

As preparation for starting a stream, waveform data half as large as the stream buffer is transferred to the
stream buffer, in order to eliminate time-lag in sound generation. Preparation is done by calling
SpuStTransfer(), specifying SPU_ST_PREPARE as the first argument. The second argument specifies the
voices used for the stream by setting the bits of SPU_OCH ... SPU_23CH. For example, to prepare voices
0 and 1 for streaming:

SpuSt Transfer (SPU ST PREPARE, (SPU OCH | SPU 1CH));

When data transfer for the requested voices is completed, the preparation finished callback function is
called. After preparation, but prior to starting playback of the stream, you must specify the attributes for the
next transfer; if playback is to immediately follow preparation, attributes must be set in the preparation
finished callback function.

In particular, you must specify the start address of the next section of waveform data, to be copied to the
second half of the buffer. (This section need not be contiguous in memory with the data which was
transferred during the preparation stage.) Example:

stenv->voi ce [n].data_addr += (0x8000 / 2);

Start of the Stream

When preparation is completed for each stream, start the stream by calling SpuStTransfer() with the first
argument SPU_ST_PLAY. The second argument specifies the voices used for the stream (by ORing the
corresponding bits SPU_OCH to SPU_23CH); this value must be the same as the value specified during the
preparation stage. Example:

SpuSt Transfer (SPU_ST_PLAY, (SPU OCH | SPU_1CH));
As soon as the stream is started, sound generation (Key on) is performed.

When transfer is completed for a stream, the transfer finished callback function is called. You use this
function to set the attributes for the next transfer. You must specify the start address in RAM of the next
section of waveform data (which is half as large as the stream buffer). This section need not be contiguous
with the data for the previous or next transfer. Example:

stenv->voi ce [n].data_addr += (0x8000 / 2);

Stream Termination

To terminate a stream, set voice[| status in the SpuStEnv structure to SPU_ST_STOP in the transfer
finished callback function. Set voice[].last_size to the size of the remaining waveform data (which must be
half as large as the stream buffer or less). After transferring the waveform data area represented by

voice [|.data_addr, the stream is terminated.

Example:

stenv->voi ce [n].data_addr += (0x8000 / 2);
stenv->voice [n].status = SPU_ST_STOP;
stenv->voice [n].last_size = 0x4000;

Run-Time Library Overview CONFIDENTIAL

Basic Sound Library

When playback of this stream completes, the stream finished callback function is called (immediately before
the start of the next transfer if other streams are still being processed.)

Completion

When streaming is completed, call SpuStQuit(). Before calling, processing must be completed for all
streams, and the status must be idle.

16-15

Basic Sound Library and Extended Sound Library Common Uses

The following is some information regarding using both libspu and libsnd.

Initialization

When using Ssinit() in libsnd, it is not necessary to call Spulnit(), because Ssinit() internally calls Spulnit().

Sequence Data

When using sequence data such as SEQ/SEP, normally it is necessary to use libsnd, since libspu has no
functions to handle them.

When creating an individual driver to analyze and generate sequence data using libspu, it is necessary to
use the libapi root counter and event processing functions for time management.

Sound Generation/libsnd Voice Manager Function

libsnd dynamically controls the voice ratio, and it generally controls the on/off of all 24 voices. Since libspu
cannot use these controlled voices by setting the voices assigned to libspu to SsSetReservedVoice() (with a
setting value less than 24) it will be possible to divide the voices controlled by libsnd from the voices which
libspu can use.

Transfer to the Wave Pattern Data Sound Buffer

Although it is possible to use libspu to transfer VAB data to the sound buffer, header and attribute
information isn’t preserved.

Therefore, you should use libsnd routines:

* Use SsVabOpenHead(), SSVabOpenHeadSticky(), SsVabTransBody() or SsVabTransBodyPartly() to
transfer the wave pattern

* Use SsUtGetVabHdr() to get header information

* Use SsUtGetProgAtr() or SsUtGetVagAtr() to select information to find out what location in the sound
buffer the wave pattern data has been transferred

» Use SpuSetVoiceAttr() to set the voice attributes used in libspu.

Libsnd’s default transfer mode is DMA transfer. Using libsnd, the transfer mode can be changed using
SpuSetTransferMode(); it should be called before SsVabTransBody()/SsVabTransBodyPartly().

A transfer completion callback function can be used in libspu, but not in libsnd. Before calling the wave
pattern transfer function (SsVabTransBody()/SsVabTransBodyPartly() in libsnd, the transfer completion
callback function must be set to NULL. Use SsVabTransCompleted() to determine completion status.

(void) SpuSetTransferCallback ((SpuTransferCallbackProc) NULL);

SsVabTransBody (. . .);

CONFIDENTIAL Run-Time Library Overview

16-16 Basic Sound Library

Sound Buffer Memory Control and Reverb

When using the libsnd function SSinit(), SpulnitMalloc() is called internally, so you don’t need to call it
yourself. It specifies 32 as the maximum number of memory areas that can be allocated by SpuMalloc() and
SpuMallocWithStartAddr().

When a VAB is opened using SsVabOpenHead(), SpuMalloc() is called internally, and when it is closed
SpuFree() is called. At any time, the number of additional memory areas the user can allocate with
SpuMalloc()/SpuMallocWithStartAddr() is (32- number of VAB openings). If you need to allocate more areas,
call SpulnitMalloc() after Ssinit() and pass a greater number. The size of the control table you must allocate
is SPU_MALLOC_RECSIZ x ((number of VAB openings + number of SPUMalloc() calls by user) +1)

Alternatively, you can do your own sound buffer memory management and use SsVabOpenHeadSticky() to
specify a particular address in the sound buffer where the VabBody is to be transferred.

Libsnd reverb has been provided using almost the same functions as in libspu. Therefore,
SpuReserveReverbWorkArea() in libspu can be used in the same way.

Refer to the Run-Time Library Reference for more information on these functions.

Applying Reverb to Voices Using Libspu and Libsnd

SpuSetReverbVoice() cannot be used to apply reverb to voices controlled by libsnd (that is, those set by
SsSetReservedVoice(). Instead, use SsQueueReverb().

Prior to library 4.5, when libsnd voice allocation was used, voices set by SpuSetReverbVoice() would not
work correctly, because they would be turned off during the libsnd tick callback. This problem has been
fixed in library 4.5

Noise during CD-DA/XA playback
When noise occurs during CD-DA/XA playback, check the following points:

Is the converted data correct?

The sound tool assumes that data is 16-bit straight PCM data. Note that it is not compatible with AIFF.
When converting AIFF, since the header and footer information which appears at the beginning and end is
converted into sound, noise will be produced. The SoundDesignerll 2.5 sampling data format is 16-bit
straight PCM, so it can be used as is.

Does the volume decrease when playback is paused or a seek is performed?

Pausing a CD or performing a seek while sound is playing can cause clip noise to be produced. When
pausing a game where the CD also pauses, issue the CD command after performing a fade out.

Does the XA data contain a large number of high pass components?

With XA data, sound is compressed to 1/4, so noise is sometimes produced. The noise can become
particularly evident when there are a large number of high pass components. Perform a pre-process such
as installing a filter in advance to avoid this.

Run-Time Library Overview CONFIDENTIAL

Chapter 17:
Serial Input/Output Library

Table of Contents

Overview 17-3
Library and Header Files 17-3
Driver and BIOS 17-3
Serial 1/O Driver 17-3
BIOS 17-3

CONFIDENTIAL File>Properties>Summary>Title

17-2 Serial Input/Output Library

File>Properties>Summary>Title CONFIDENTIAL

Serial Input/Output Library 17-3

Overview

This library (libsio) provides standard input/output functions for connecting the PlayStation to the PC. It
supports the output of debug information to the PC.

Library and Header Files
To use the standard I/O library, you must link with the library file | i bsi o. | i b.

Your source files must include the header file | i bsi o. h.

Driver and BIOS

The serial I/O library consists of the serial I/O driver and the serial /0 BIOS.

Serial 1/0 Driver

The serial I/O driver provides standard 1/0O using standard C-language procedures. By including the driver,
you can easily allocate standard I/0O to the communications port. The BIOS should be used when
performing complex communication with a PC and modem, etc.

To include the serial I/0 driver, call AAdSIO(). To delete it, call DelSIO().

BIOS

The serial I/0 BIOS provides low-level driver control and information acquisition functions that cannot be
covered by standard C functions. The interface function is _sio_control(). Since debugging data is normally
output from the library in standard I/0O, when performing data communication with a PC, unexpected data
is output. To avoid this, communication must be performed using the BIOS, without attaching the driver
and with the standard I/0 in NULL mode. The BIOS will also operate when the serial I/0O driver is not
included. The features provided in sio_control are shown below:

Syntax:
long _sio_control (
unsi gned | ong cnd, /* command */
unsi gned | ong arg, /* subconmand */
unsi gned | ong param /* argunent */

For details, see the discussion of _sio_control() in the Run-Time Library Reference.

CONFIDENTIAL File>Properties>Summary>Title

17-4 Serial Input/Output Library

File>Properties>Summary>Title CONFIDENTIAL

Chapter 18:
HMD Library

Table of Contents

Overview 18-3
Library and Header Files 18-3
Basic Architecture 18-3
HMD Features 18-4
Hierarchical structures 18-4
Polygon/MESH 18-5
Shared polygons (one-skin model) 18-6
Animation 18-6
MIMe 18-6
Other Features 18-7
Hierarchical Coordinate Systems and Process Flow 18-8
Basic Data Structures 18-10
Primitives 18-10
Primitive Sets 18-11
Primitive Headers 18-11
Sections 18-12
Primitive drivers 18-13
Information that can be accessed from the primitive driver 18-13
Information that should be returned to the framework 18-13
MIMe Primitive Structure 18-13
Notations used in diagrams 18-13
Addendum A: Migrating from TMD to HMD 18-18
Addendum B: Installation status of HMD primitive drivers 18-18

CONFIDENTIAL Run-Time Library Overview

18-2 HMD Library

Run-Time Library Overview CONFIDENTIAL

HMD Library 18-3

Overview

The HMD file format integrates several types of data, including modeling, animation, texture, and MiMe
data. The HMD Library (libohmd) provides functions and structures for using HMD. It uses the jump table
method used in libgs to handle TMD data. HMD data consists of a number of primitive types, which have
corresponding primitive drivers (functions that handle the data). SCE provides standard primitive drivers for
handling a variety of types, including modeling data with hierarchical structures, one-skin models, key-frame
animation and vertex/joint MIMe.

You use standard public APIs to call primitive drivers within the HMD framework. You can define your own
primitive drivers to provide optimization and expansion for individual game titles.

In PlayStation library versions between 4.0 and 4.2, HMD-related functions were part of the libgs and libgte
libraries, but are now offered as a separate library. These functions have been removed from the libgs and
libgte libraries, and their declarations have been removed from the corresponding header files.

Note: The environment map is provided as a Beta version with this release. Because future releases may
introduce format changes not compatible with the current release, the Beta version primitives are currently
not supported by SCE and should be used only at the licensee's discretion.

Library and Header Files

Programs that make calls to the HMD library must link with the library file | i bhnd. | i b. Because libhmd is
currently dependent on libgs, | i bgs. | i b must also be linked in.

Source files must include the header files | i bhnd. h and | i bgs. h.

Basic Architecture

The basic HMD architecture is shown in the figure below.

Title extensions

Framework layer | HMD library

Figure 18-1: HMD Basic Architecture

Standard

Data format layer drivers

Third-party extensions

Primitive driver layer

The framework layer is provided by libhmd. There is a standardized API between the framework layer and
the primitive driver layer, allowing user-defined primitive drivers and third-party products to be used. The
data format layer refers to data formats based on combinations of primitive drivers.

The framework layer performs operations such as:

* Mapping HMD data loaded in memory
* Scanning, which binds primitive drivers to their corresponding primitive types
» Sorting, to traverse the data structures and call the actual primitive drivers.

Each of these operations is described in a later section.

CONFIDENTIAL Run-Time Library Overview

18-4 HMD Library

Part of the HMD data format is defined by the framework, and cannot be modified or extended
independently by the user. Another part is defined by the implementation of the primitive driver, and can be
defined freely based on the fixed set of rules provided by the framework.

For example, the primitive drivers provided by SCE for processing polygons, because of their general-
purpose design, may be inadequate in terms of speed. Performance improvements can be obtained by
defining new drivers specifically for a particular title.

HMD Features

The HMD framework and the primitive drivers are loosely coupled using a standardized API. SCE provides a
group of general-purpose primitive drivers, and users can write their own specific primitive drivers.

This section describes the following features that are available from the SCE primitive drivers:

e Hierarchical structures

* Polygon/MESH

» Shared polygons (one-skin model)
e Animation

e MIMe

e Other

Hierarchical structures

In the TMD/PMD formats used by libgs, data in hierarchical structures have to be described in the program
code. Hierarchical structures can be represented with TOD, but this increases code size and can make
communication between designers and programmers more difficult. HMD overcomes this problem by
implementing hierarchical structures in the data format itself.

Figure 18-2: Hierarchical Structure

A's Child 1

™ prat A's Child 2

Parent coordinate system A

Run-Time Library Overview CONFIDENTIAL

HMD Library 18-5

Polygon/MESH

Polygon/MESH is a high-order set of what was provided in TMD/PMD. In addition to standard polygons,
polygons using MESH (Strip Mesh) can also be described with this structure. In some cases, the use of
MESH can improve performance in terms of both size and speed.

Figure 18-3: Strip Mesh

In the figure above, if polygons were used, four triangles and 4 x 3 = 12 coordinate transformations would
be required. However, with Strip Mesh, only 6 coordinate conversions are necessary. In terms of the data
structure, four triangles would normally require 12 indexes to specify the vertices, while Strip Mesh would
only require 6. The more complex the figure, the greater are the advantages in speed and memory efficiency
offered by Strip Mesh. Rendering speed is improved, since GPU packets are generated as connected

triangles.

CONFIDENTIAL Run-Time Library Overview

18-6 HMD Library

Shared polygons (one-skin model)

With HMD, a polygon spanning the hierarchical structures described above can be pasted, allowing one-
skin models to be represented. These can be used at joints so that more natural, smoother figures can be

represented.

Figure 18-4: Shared Polygons

Polygon c of coordinate system C

Polygon a of coordinate system A

Polygon b of coordinate system B

In the figure above, three shared polygons (P, Q, R) are defined. Polygon P has two vertices belonging to
coordinate system A and one vertex belonging to coordinate system C. Thus, the polygon is shared
between coordinate system A and coordinate system C. The vertices of the triangle in polygon Q belong to
coordinate systems A, B and C. This polygon is shared by three coordinate systems. R is a quadrangle
polygon shared by coordinate systems B and C.

With this arrangement, the values of coordinate systems A, B, and C could be changed without losing the
connectivity between the polygons, since polygons P, Q and R follow the coordinate systems to which their

vertices belong.

Animation

Key-frame animation can be performed with three types of interpolation curves (Linear, Bezier, and
B-Spline). In addition, multiple motions can be saved in HMD data and switched during execution.

Key-frame animation can be applied to standard coordinate data. If the data is in memory, arbitrary values
can be animated to provide more varied expressions, e.g. moving MIMe parameters and controlling polygon
attributes such as color.

MiIMe

MIMe is suited for facial animation, since the high-speed multi-layer interpolation performed by the GTE can
be used to combine multiple key frames. In the past, sample programs have been provided to implement
vertex/normal MIMe. These have now been incorporated into the HMD format, along with "joint MIMe",
which interpolates joint angles. Compared to vertex/normal MIMe, joint MIMe provides reduced data size
and improved speed. By combining vertex and joint MIMe, various movements can be efficiently expressed,
e.g., the muscle formed when flexing an elbow.

Run-Time Library Overview CONFIDENTIAL

HMD Library 18-7

Figure 18-5: Combining vertex and joint MIMe

Basic form

R

Key 2

Vertex
differential

Angle
differential

Interpolation

The basic form, angle differential, and vertex differential shown in the figure above can be specified in HMD
data. Weight can be controlled via application code or by using HMD animation.

Other Features

Libhmd provides camera/light primitives and experimental primitives, such as ground primitives containing
terrain data and simulated environment mapping primitives (Beta version).

Samples of primitive driver source code are also provided as a reference for implementing user-defined
primitives.

CONFIDENTIAL Run-Time Library Overview

18-8 HMD Library

Hierarchical Coordinate Systems and Process Flow

The following figure shows the operations that are performed starting with the hierarchical coordinate
system.

Figure 18-6: Process flow and data structures

O ﬂﬂ?m
~ 00

> [—><]
?EE%

Q_

58 &%

O Coordinate system <l Process end

Non-rendering E Rendering primitive set
primitive set

Primitive sets come in two varieties:

* Non-rendering primitive sets handle operations where direct GPU packets are not generated, e.g.,
loading animation or texture data to VRAM.

* Rendering primitives generate GPU packets, based on the results from non-rendering primitives or
values specified in data, which are then entered into an ordering table.

The process begins from the pointers to the primitive sets that correspond to each of the root coordinate
systems.

The figure above gives a schematic representation of the flow through the process.

Pointers to primitive sets are placed near the top of HMD data. The first word is the number of pointers: the
value N+2 means that there are N primitive sets, each corresponding a coordinate system, as well as
pointers to pre-processing (such as loading textures) and post-processing (such as rendering shared
polygons) primitive sets. Pointers to the second primitive set through the (N+1)st primitive set correspond to
the N coordinate systems. Primitive sets can also contain pointers for linking to the next primitive set. This
enables completely different types of primitive sets to be processed one after another in the same
coordinate system. Coordinate system data also contains pointers for specifying the parent coordinates.
These pointers are used to link the hierarchical coordinate system with their related primitives.

Run-Time Library Overview CONFIDENTIAL

HMD Library 18-9

Figure 18-7: Linking primitive sets and coordinate systems

N+2;

Pointer to pre-process primitive set

® Pointer to primitive set #1

T Pointer to primitive set #2

S

Pointer to primitive set #N

Pointer to post-process primitive set

N;

® Coordinate system 1

® Coordinate system 2

Coordinate system N

In order to use HMD, parsing must be performed according to the data structures described above, and
the following three operations must be performed.

» Mapping - When HMD data is created, embedded pointer values contain offsets from the start of the
data. During mapping, these offsets are converted into the real addresses where the data is loaded. In
general, mapping is performed only once after HMD data is read into memory. For more information,
refer to the description of GsMapUnit() in the Run-Time Library Reference.

» Scanning - Primitive types are represented as 32-bit values. During scanning, they are replaced with
pointers to the corresponding primitive driver functions. In general, scanning is performed only once
after mapping. For more information, refer to the description of GsScanUnit() in the Run-Time Library
Reference.

» Sorting - Sorting involves calling the actual primitive drivers set up during scanning. In general, sorting
operations are called for each Vsync. For more information, refer to the description of GsSortUnit() in
the Run-Time Library Reference.

CONFIDENTIAL Run-Time Library Overview

18-10 HMD Library

Basic Data Structures

This section describes basic data structures used in HMD. See the HMD section of the File Formats manual
for further details.

Primitives

The primitive is the smallest unit in the HMD format. Primitives contain primitive types, and are called when
the corresponding primitive driver performs a sorting operation. The structures below are defined by the
framework (shown in the HMD assembler "LAB" format).

DEV_|I D(dev_id)| CTE ctg)| DRV(drv) | PRI M_TYPE(type);

H(size); MH(data));
DATA,; /* for "size - 1" long words */

The first line (DEV_I D(dev_i d) | CTE(ct g) | DRV(drv) | PRI M_TYPE(t ype)) is a 32-bit value
representing the primitive type (and other data). During scanning, it is replaced by a pointer to the
corresponding primitive driver.

» dev_i d: a 4-bit value for the vendor that defined the primitive. Ox0 and 0x01 are SCE. Oxf is reserved
for user-defined primitives. Other values are planned for third-party primitive drivers.

* ctg: a4-bit value indicating the major category of the primitive. The standard primitives provided by
SCE are categorized in the following manner: polygons (CTG_POLY: 0Q); shared polygons
(CTG_SHARED: 1); images (CTG_IMAGE: 2), Animation (CTG_ANIM: 3), MIMe (CTG_MIME: 4), Ground
(CTG_GND: 5), and Equipment (CTG-EQUIP: 7)

e drv: an 8-bit value used when actions need to be modified, without needing to redefine the data
structures used by the primitive. With polygon primitive types provided by SCE, these bits are used to
specify double-sided/single-sided polygons, for example.

* type: a 16-bit value specifying the primitive type.
H(si ze) is a 16-bit value representing the size of the primitive. “H” stands for half-word.

M H(dat a)) contains 15 bits of data that are used by the primitive driver. “M” refers to the fact that the
high bit is changed from 1 to O during scanning in order to prevent double-scanning. Thus, only the low
15 Dbits are valid as data.

DATA contains si ze words. The values depend on the primitive type.

For example, the Gouraud triangle primitives provided by SCE would be:
DEV_| D(SCE) | CTG(CTG_POLY) | DRV(0) | PRIM_TYPE(TRI | | | P) ;

H(2); MH20)); /* size: always 2 for SCE s standard
polygon primtive data: interpreted as a
pol ygon count for this primtive driver */

(Poly_0010 - Poly_0000) / 4; [/* Ofset fromthe start of the pol ygon
section contained in the corresponding
pol ygon header. In this case, data for
20 Gouraud triangles are arranged
continuously fromthe offset position. */

The primitive driver is called at least once for each primitive. For efficiency, it is advantageous to perform
many operations for a single primitive. In the polygon primitive type described above, it would be inefficient
to prepare the data as 20 primitives containing one polygon each, in terms of instruction cache hit rate and
memory access.

Run-Time Library Overview CONFIDENTIAL

HMD Library 18-11

Primitive Sets

A primitive set contains multiple primitives. It consists of the following data:

Pri nmtet :
next _primset;
Pri nmHdr ;
M num_of _types);
* next_prim_set;
The pointer to the next primitive set. This allows manipulating different types of primitive sets in a single
coordinate system, in an explicit sequence. Depending on how the link is set up, the size of the data
can be reduced through instancing. When there are no more primitive sets, the value "TERMINATE"
(Oxffffftf) is specified.
* PrimHdr
Pointer to a primitive header. It must be in a format matching the primitive type contained in the
primitive set.
* M(num_of_types);

The number of primitives contained in the primitive set. Double-mapping is prevented by setting the
high-order bit to O when next _pri m set and Pri nHdr are mapped.

As an example, a primitive set containing the Gouraud triangle primitives described above is shown below.

Pol yPri nfet :
TERM NATE; /* next prim nothing nore to process */
Pol yPrinHdr / 4; /* header containing pointer to section in
whi ch pol ygon data, etc. are saved */
M 2); /* num of types; one nore in addition to

Gouraud triangles */

Primitive Headers

A primitive header contains pointers to sections in the HMD data, as well as numeric data. Its format
depends on the implementation of the primitive driver that corresponds to the particular type.

The header consists of a series of 32-bit words:
Pri nHdr :
hdr _si ze;
Mptr);

num

* hdr_size - The size of the primitive header in 32-bit words (not including the space taken by this value
itself.)

The remaining words are either:

* M(ptr) - If the high-order bit is 1, saves a pointer to a particular section which is then mapped.

* num - If the high-order bit is 0, the value is interpreted as a standard numeric value and mapping is not
performed.

CONFIDENTIAL Run-Time Library Overview

18-12 HMD Library

The primitive header corresponding to the Gouraud triangles is shown below.

Pol yPri nHdr :
3; [* hdr_size */
M Pol y_0000 / 4); /* base address for polygon data */
M Vert _0000 / 4); /* vertex data; referenced in polygon
data via indexing */
M Nor m_0000 / 4); /* normal data; referenced in polygon

data via indexing */

Sections

A section is used to group together data of a type other than what is described above. The primitive header
itself is also set up as a "primitive header section".

The figure below shows the relationship between the different components.

Figure 18-8: Primitive sets, primitives, primitive headers, sections

Coordinate | » Primitive set 1 > Primitive header 1
system
Primitive 1
Primitive 2
Primitive N
» Primitive set 2 > Primitive header 2
A 4 <
Section 1
Terminal
Section 2 <
Section 3 ¢

Run-Time Library Overview CONFIDENTIAL

HMD Library

In the example shown in the figure, primitive set 1 contains N primitives, and these refer to primitive
header 1. Primitive header 1 contains pointers to sections 1 and 2. Primitive set 2 is linked from 1 and
refers to primitive header 2, which is in a different format (or simply contains different values) from primitive
header 1. Primitive header 2 contains a pointer to section 3.

18-13

Primitive drivers

Primitive drivers, corresponding to the different types, are called during sorting operations.

Information that can be accessed from the primitive driver
The primitive driver can receive the following information from the framework:

» A copy of the primitive header, which contains pointers to sections and numeric data.
* Pointers to primitive data.

» Pointers to the ordering table specified by GsSortUnit(). For rendered primitives, the generated
GPU packets are registered.

Information that should be returned to the framework
Primitive drivers return a pointer to the next primitive.

The location of the next primitive can be determined by referencing the size of the primitive. Depending on
the defined primitive, it may be possible to determine the pointer to the next primitive without referencing
the size (for example, with the standard polygon primitive driver from SCE, the fact that size is always 2 can
be used to return the pointer to the next primitive).

MIMe Primitive Structure

This section uses diagrams to provide additional explanation on HMD MIMe primitives with complicated
structures. Refer to the HMD section of the File Formats manual for details.
Notations used in diagrams

Figure 18-9: Index starting point

Point indicating section starting point, origin of index references including within a primitive, etc. In “index
reference” below, it is added to the arrow shown with a dotted line.

Figure 18-10: Index reference

—r e

Indicates an index reference with the “index starting point” “x” as the origin.

CONFIDENTIAL

Run-Time Library Overview

18-14 HMD Library

Figure 18-11: Pointer reference

—

Indicates the absolute address reference within the HMD file. Values such as this are only described in

primitive headers.

Figure 18-12: Vertex MIMe

VertSect

Vert[0]

f Vert[i]

Vert[n]

VertMIMeDiff
b

diffs_num(n) | onum(m)

dflags

VertMIMeDiffData idx[0]

VertMIMeDiffData idx[i]

VertMIMeDiffData idx[n-1]

VertMIMeChanged idx[0]

I A =—| VertMIMeChanged idx{i]
I (RstVertMIMeChanged)

{
\ .
\ VertMIMeDiffData

vstart

n(vnum) reserved
dvy[0] dvx[0]

- dvz[0]
dvy[n-1] dvx[n-1]
- dvz[n-1]

Run-Time Library Overview

VertMIMeChanged idx[m-1]

VertMIMeDiffData[0]

VertMIMeDiffDatal]

VertMIMeDiffData[n-1]

CONFIDENTIAL

VNMIMePrimHdr
size(7)

MIMePr ptr

MIMe num

reserved MIMelD

MIMeDiffSect ptr

OrgsVNSect ptr

NertSect ptr

NormSect ptr

VertMIMePrim

type

m |n size

VertMIMeDiff idx[0]

VertMIMeDiff idx[]

VertMIMeDiff idx[n-1]

MIMeDiffSect

MIMeDiff[0]

MIMeDiff[j|(VertMIMeDif)

MIMeDiff[n-1]

-——— o == ”

"

Except for when the vstart starting point becomes NormSect ptr rather than VertSect ptr, normal MIMe

reset has the same structure as vertex MIMe.

Figure 18-13: Vertex MIMe reset

VertSect

Vert[0]

Vert[i]

Vert[n]

/,_______—____O — e e = m,
”

RstVertMIMeDiffData

a

A(RstVertMIl\/IeChanged)

RstVertMIMeDiff

HMD Library 18-15

RstVNMIMePrimHdr
size(5)
reserved MIMelD

MIMeDiffSect ptr

OrgsVNSect ptr

NertSect ptr

NormSect ptr

RstVertMIMePrim

type

m |n |size

RstVertMIMeDiff idx[0]

RstVertMIMeDiff idx[i

RstVertMIMeDiff idx[n-1]

diffs_num(n) |0

RstVertMIMeDiffData[0]

MIMeDiffSect

MIMeDiff[0]

N vstart \Il\ :
ostart RstVertMIMeDiffDatali]
vnum changed

MIMeDifffij(RstVertMIMeDif)

RstVertMIMeDiffData[n-1]

CONFIDENTIAL

MIMeDiff[n-1]

Run-Time Library Overview

L CEEEE

18-16 HMD Library
Except for when the vstart starting point becomes NormSect ptr rather than VertSect ptr, normal MIMe
reset has the same structure as vertex MIMe reset.

Figure 18-14: Joint Axes MIMe

JntMIMePrimHdr

size(5)

CoordSect ptr

MIMePr ptr

MIMe num

reserved MIMelD

MIMeDiffSect ptr \

RstdntMIMePrimHdr

size(3)

CoordSect ptr

reserved MIMelD

MIMeDiffSect ptr 4\

(Rst)AxesMIMePrim

AxesMIMeDiff type
AxesMIMeDiffData

diffs_num(n) | coord_id m | n | size
dvy dvx

dflags AxesMIMeDiff idx[0]
dtp dvz
dtx AxesMIMeDiffData[0]

AxesMIMeDiff idx[i] N
dty ~
dtz : . !

AxesMIMeDiff idx[n-1] |

AxesMIMeDiffDatali] 1
|
: |
RstAxesMIMeDiffData MIMeDiffSect
a
m[O][1] m[0][0] AxesMIMeDiffData[n-1]

MIMeDiff[0]

m[1][0] m[O][2] i
m[1][2] m[1][1] RstAxesMIMeDiffData : /
m[2][1] m[2][0]

MIMeDiff[i](AxesMIMeDiff)
changed m[2][2]
dtx
dty

MIMeDiff[n-1]
dtz

Run-Time Library Overview CONFIDENTIAL

Figure 18-15: Joint RPY MIMe

RPYMIMeDiffData

RPYMIMeDiff

JntMIMePrimHdr

size(5)

CoordSect ptr

MIMePr ptr

MIMe num

reserved MIMelD

MIMeDiffSect ptr

RstdntMIMePrimHdr

size(3)

CoordSect ptr

reserved MIMelD

MIMeDiffSect ptr

(RsHRPYMIMePrim

type

diffs_num(n) | coord_id

dflags

m |n |size

RPYMIMeDiff idx[O]

RPYMIMeDiffData[0]

RPYMIMeDiff idx{i]

dvy dvx
dtp dvz
dtx
dty
dtz

RstRPYMIMeDiffData

RPYMIMeDiffDatali]

RPYMIMeDiff idx[n-1]

RPYMIMeDiffDataln-1]

MIMeDiffSect

RstRPYMIMeDiffData

MIMeDiff[0]

dvy dvx
changed dvz
dtx
dty
dtz

CONFIDENTIAL

MIMeDifffil(RPYMIMeDif)

MIMeDiff[n-1]

HMD Library 18-17

L CEEE

Run-Time Library Overview

18-18 HMD Library

Addendum A: Migrating from TMD to HMD

The following are some differences between using libgs with the TMD format and liohmd with the
HMD format:

The GsSortObject...() initialization functions are replaced be GsSortUnit().

Object handler structures change from GsDOBJ... to GsUNIT. A primitive’s behavior is not controlled
with attributes but by switching to a different primitive driver.

GsUNIT contains two members. coord points to the coordinate system. primtop points the start of the
primitive block. As before, the local-world matrix should be calculated from coord and GTE should be
set before calling GsSortUnit(). primtop is passed on to GsSortUnit().

Pointers specified in the HMD data are converted to real addresses via GsMapUnit().

GsScanUnit() is used to get addresses and types for embedding pointers to the primitive drivers. The
application program looks at the type bit, determines which primitive driver should be linked, and sets

up the obtained address. When the INI bit in the type field is on, a function for initializing the sections
that are defined locally--for example, GsMapCoordUnit()--is called.

Addendum B: Installation status of HMD primitive drivers

An Excel spreadsheet is provided on the Technical Reference CD, containing the current installation status
of primitive drivers in libhmd. To access it, open this chapter (Chapter 18, Addendum B) in the Run-Time
Library Overview on the CD and click the link.

CONFIDENTIAL

Run-Time Library Overview

Chapter 19:
PDA Library (libmcx)

Table of Contents

Overview 19-3
Library and Header Files 19-3
Library functions 19-3
Checking PDA status 19-3
Detecting new cards 19-3
Conflicts with other libraries 19-4
Conflicts with use of libcard, liomcrd and card BIOS 19-4
Constraints between libmex and libpad, libapi controller functions and libcard 19-4
PDA 19-5
Hardware 19-5
Guidelines for using the PDA 19-5
Terminology 19-5
File names 19-5
File header 19-5
Icons 19-9
Icon types 19-9
File list function 19-10
Game selection function 19-11
Notes on icon entry table and icon image position 19-11
Standard use of PDA functions 19-11
Initialization and termination 19-11
Using asynchronous functions 19-12
Saving a PDA application or file list icon images file 19-12
Enabling the speaker, IR communication, and LED 19-12

CONFIDENTIAL Run-Time Library Overview

19-2 PDA Library (libmcx)

Run-Time Library Overview CONFIDENTIAL

PDA Library (libmcx) 19-3

Overview

The PDA library provides access to various functions of the PDA when the PDA is inserted into a Memory
Card slot. This chapter provides an overview of these functions.

Library and Header Files
The PDA library file I i brex. |'i b must be linked to any programs that call PDA library services.

Source code must include the header file | i bnecx. h.

Library functions

* Get PDA status

» Switch PDA application

* Access PDA memory

* Turn file transfer display on/off
* Get/set real time clock

» Get/set alarm clock

Checking PDA status

The PDA can be inserted and removed at anytime with the power on, and a user application must be
prepared to handle this situation. When a card is inserted, the libmcx functions McxCardType(), followed by
McxSync(), can be called to check for the presence of and identify a PDA or Memory Card.

If the value of *result from McxSync() is McxErrNoCard, then no card (neither PDA nor Memory Card) is
present. A *result value of McxErrinvalid means that some card is connected to the Memory Card connector
but a communications failure has occurred. *result values of either McxErrSuccess or McxErrNewCard
mean that a PDA was detected. For McxExecFlag() only, if a PDA or a Memory Card is inserted, a
subsequent call to McxSync() will return McxErrSuccess or McxErrNewCard. Therefore, McxExecFlag()
cannot be used to distinguish a PDA from a Memory Card.

Detecting new cards

A PDA that has just been swapped is considered to be a new card, and is handled just like a Memory Card.
After the card is inserted and all process registration functions have been called, calling McxSync() will
return McxErrNewCard in *result, reporting that PDAs have been swapped. Subsequently, processes can
exit normally and their results can be used.

However, when *result is McxErrNewCard, processing will be interrupted for McxExecFlag(). Unverified flags
should first be cleared using MemCardAccept() and _card_clear(), then process registration should be
performed again.

CONFIDENTIAL Run-Time Library Overview

19-4 PDA Library (libmcx)

Conflicts with other libraries

Conflicts with use of libcard, libmcrd and card BIOS

Since interrupts from libomcex conflict with libcard and libmerd, libmex cannot be used when asynchronous
functions from libcard or libmcrd are pending. Otherwise, libmcx does not conflict with libcard or libmcerd
since libmcx does not use any libcard, liomerd, card BIOS functions, or HWCARD/SwWCARD events.

Constraints between libmcx and libpad, libapi controller functions and libcard

The initialization and start-up functions in the libraries must be called in a specific sequence. Otherwise,
improper operation may occur during program execution. In the figure below, the function at the starting
point of the arrows must be called first.

Figure 19-1: Function calling sequence

InitPAD() Padinit(
INitCARD()

[StatCARD) |

\ J
| McxStartCom() |

[PadInitDirect(),PadinitMtap() |

PadStartCom()

A standard sequence in a program would be as follows.

Padlnit();

I ni t PAD() ;

St art PAD() ;

I ni t CARD() ;
Start CARD() ;
McxSt art Com() ;
PadlnitDirect();
PadSt art Com() ;

However, the following three sets of function pairs cannot be called simultaneously:
[Padinit(],[InitPAD(),StartPAD()],[PadInitDirect(),PadStartCom()].
An appropriate set from the three sets should be selected when writing programs.

MemCardInit() and MemCardStart() can be replaced with InitCARD() and StartCARD(). InitPAD() and
StartPAD() can be replaced with InitTAP() and StartTAP() or InitGun() and StartGUN().

Run-Time Library Overview CONFIDENTIAL

PDA Library (libmcx) 19-5

PDA

The PDA is a device that functions like a Memory Card, allows saved files to be executed as ARM7
programs, and provides LCD, LED, speaker, and IR communication functions.

Hardware

The following table gives the specifications of the PDA hardware.

Table 19-1: PDA Memory Card specifications

ltem Description
Capacity 120 KBytes formatted
(accessed as 128 byte sectors)
Communications Synchronous serial communications using the controller port.
Access speed (1) Access inhibited for 20 msec after 1 sector written.

(2) Maximum continuous read speed: approximately
10 KBytes/sec.

Other Can be hot swapped without turning off the PlayStation.
Guaranteed for 100,000 writes.

Guidelines for using the PDA

The PDA is a resource that can be shared by multiple applications. Therefore it should be used in
accordance with guidelines that allow it to be used as a common resource.

Terminology
Memory capacity is expressed in units of blocks, as needed for the product catalog.

Each block contains 64 128-byte sectors for a total capacity of 8,192 bytes.

File names

When using Memory Card file header extensions (described later), Memory Card filenames must be defined
so that the hyphen in SLPS-xxxxx is replaced with a capital "P", i.e., SLPSPxxxxx. Otherwise, the
application will not be started as a PDA application by the start-up application and file list animation icons
will not be displayed in the file list.

File header

Always place a standard header at the start of each file. Two types of file headers are available: Memory
Card extended file headers and existing Memory Card file headers . These are described in more detail
below. The extended file headers are upward compatible with existing file headers.

CONFIDENTIAL Run-Time Library Overview

19-6 PDA Library (libmcx)

Table 19-2: Existing File Header (non-PDA compatible)

[tem Size Notes

Magic 2 Always 'SC'

Type 1 0x11/0x12/0x13 *1

No. of blocks 1

Document name 64 Shift-JIS code *2

Pad 28 All Ox00

CLUT 32 CLUT entry x 16 *3

Icon image 1 128 Required (16 x 16bit x 4plane)
Icon image 2 128 Only when Type=12,13

Icon image 3 128 Only when Type=13

Table 19-3:

*1: Type: Indicates the number of icon images. Preset icon images are displayed sequentially

to provide animation.

*2: 32 full-width characters, non-kanji and Level 1 kanji only. However, 0x84bf through
0x889e cannot be used. If the string is less than 32 characters, it must be terminated with

0x00.

*3: CLUT: Actual display color corresponding to a color number
CLUT= (B[4:0] << 10) | (G[4:0] << 5) I R[4:Q]

Memory Card extended file header
ltem Size Notes Changes
Magic 2 Always 'SC'
Type 1 0x11/0x12/0x13
No. of blocks 1 No. of blocks occupied
by the file
Document name 64 Shift JIS code
Pad 12 All Ox00 *
File list icons 2 Displayed when files are *
No. of animation icons listed
No. of icons used for
animation (=n1)
File type 4 "MCX0", "CRDO" *
Game selection icon No. of animation pages *
No. of pages switched on the game
selection screen (=n2)
User-defined device drivers 1 Total number of user- *
No. of entries defined device drivers
(=n3)
Reserved All 0x00 *
Program starting address unsigned long (ARM7) *
CLUT 32 CLUT entry x 16
PlayStation Memory Card 128 Required (16 x 16bit x
set-up screen icon image 1 4plane)
PlayStation Memory Card 128 Only when Type=12,13

set-up screen icon image 2

Run-Time Library Overview

CONFIDENTIAL

PDA Library (ibmcx) 19-7

ltem Size Notes Changes
PlayStation Memory Card 128 Only when Type=13

set-up screen icon image 3

Entry table for device drivers 128xn4 4bytes x 2 for each *

device driver
(n4=(n3/16) rounded up)

File list icon images 128xn1 32 x 32bit x n1 icons *

Entry table for game selection icons 128xn5 4bytes x 2 for each *
animation page
(n5=(n2/16) rounded up)
Game selection icon image 128xn6 32 x 32bits x n6 icons *
(n6 is the total sum of all
the animation icons
appearing in the game
selection icon entry
table). Put the icon image
starting address on the
128 byte boundary.

*An asterisk appears in the “Changes” column for items which change when they become
PDA file headers.

Extensions provided with PDA file headers
Previously, information had been added to the pad area in the file header. With the PDA file header, device
driver entry table, and icon data are added immediately after the icon images.
This additional information is used for the file list and game selection functions of the PDA.

Please refer to the "lcons" section for a detailed description of icon-related data.

File list icon images, animation icons

File list icon images are used for icon animation when the list of files stored in the PDA is displayed.
Animation is performed by switching 32 x 32 dot black-and-white icon images in sequence.

Generally, when the number of file list animation icons is one or more, animation is performed using the icon
images that have been prepared for the file list. Files having file type "CRDO" are not PDA applications but
they do contain icons for PDA file list animation. For these files, animation is performed using the file list icon
images.

If the file type is "MCX0" (i.e., the file is a PDA application) and if no file list icons are available (i.e., the
animation icon count is 0), then the page 1 icon of the game selection icon is used for animation.

For files with an existing file header, file list animation is performed by converting the standard icon image to
a 32 x 32 dot black-and-white image.

If the file type is "CRDOQ", the game-selection icon page count, the user-defined device driver entry count,
the reserved area, and the program starting address fields must all be filled with NULLs (0x00). Thus, there
will be no device driver entry table, game selection icon entry table, or game selection icon image fields.

File types

If a file is a PDA application, the file type will be "MCX0", indicating that the file can be executed as an ARM
program. For all other file types, it is assumed that the file is not a PDA application and that it cannot be
executed from the PDA start-up application.

CONFIDENTIAL Run-Time Library Overview

19-8 PDA Library (liomcx)

File type "CRDO" denotes a file that is not a PDA application, but does contain 32 x 32 dot icons for
performing animation on the LCD display in the PDA file list. The file list animation icon count is meaningless
for file types other than "MCX0" and "CRDO".

Game selection icons

The game selection icon image is icon animation data that will be displayed as part of the PDA's game
selection function (see the section on icons). The icon page count contains the number of animation pages
for the application, such as the "game title" animation page, the "game summary" animation page and the
"developers list" animation page. The actual icon images for the game selection icons are arranged in
sequence beginning with the start of the "game selection icon image".

The icon entry table contains the icon page count, the animation icon switching speed, and the icon image
starting address for each animation page. The actual frequency at which animation is updated is
(80 / "animation speed for page n") icons per second.

The icon image address must be specified as an absolute address where the start of the header is defined
to be 0x2000000. Put the icon image starting address on the 128 byte boundary (LSD is 0x00 or 0x80).

The n6 at the end of Table 19-3 indicates the total number of icons that have been prepared for game
selection. n6 holds the value for "page 1 animation icon count" + "page 2 animation icon count" + ... +
"page n2 animation icon count".

Table 19-4: Game selection icon entry table

MSB Byte | Byte LSB
Word (32bit)
Reserved Page 1 Page 1 animation icon count

animation speed
Icon address for page 1 animation

Page 1 Page 2 animation icon count
animation speed

Icon address for page 2 animation

Reserved

Page 1 Page n2 animation icon count
animation speed

Icon address for page n2 animation

Reserved

Note: Put each icon address on the 128 byte boundary

User-defined device driver entry count

The user-defined device driver entry count is the total number of user-defined device drivers set up to call
special functions of the PDA from the PlayStation. If there is no device entry table, this field must be set
to 0.

Device entry table

Devices are numbered as 128, 129, 130, ... from the beginning of the table. If the number of devices
exceeds 16, the next 128 bytes are used as an additional table to hold entries for 136, 137, ...

Run-Time Library Overview CONFIDENTIAL

Table 19-5: Device entry table

Word (32bit)

Fixed part of device 1 data length

Device 1 data handling routine

Fixed part of device 2 data length

Device 2 data handling routine

Fixed part of device n3 data

Device n3 data handling routine

Program starting address

The address specified here is interpreted as an absolute address used for executing the program. No errors
are reported if the specified address is invalid. The file header must start at absolute address 0x2000000.

PDA Library (libmcx)

When switching applications, execution of the application will always be started from this address.

Icons

Icon types

The PDA uses three types of icons: PlayStation Memory Card set-up screen icons, (PDA) file list icons, and
game selection icons. The table below describes the functions of these icons.

Table 19-6: Icon Types

PlayStation Memory
Card set-up screen icon

PDA file list icon

Game selection icon

lcon size
Color

Page count

Icon page
count

Minimum
required icon
count

16x16

16 colors selected from

32,768
;

1-3 icons (specified by
Type in file header)

1

needed for all files)

32x32
Black and white

ni
file list icon
animation count)

0

(if none, use other

icon instead)

32x32
Black and white

n2
(game-selection icon
page count)

n6

(total animation page
count of all animation
pages appearing in
the game-selection
icon entry table)

1

(needed only for PDA
applications)

If the file is a PDA application but there are no PDA file list icons, the first icon page from the game selection

icon is used.

If the file is not a PDA application, the PlayStation Memory Card set-up screen icon is used.

CONFIDENTIAL

Run-Time Library Overview

19-9

19-10 PDA Library (lilbmcx)

Even if the file is not a PDA application, it may still use the PDA file list icon by setting the file type to
"CRDOQ".

File list function

The file list function allows files that are stored in the PDA to be verified using icon animation.

Figure 19-2: File list functions

File 1 (non-PDA)
PlayStation file set-up screen icon]

File 2 (PDA data file)
[File list icon]

File 3 (PDA application)
[Page 1 game selection icon]

File list animation is performed using the file list icons. However, if no file list icon is available, file list
animation will still be performed by automatically substituting PlayStation Memory Card set-up screen icons.
This allows non-PDA files to be seen through the file list.

Table 19-7: Icons used in the file list

File type File list icon Game selection
animation icon count icon page count

MCX0,MCX1 1 or more *1 File list icon

MCX0,MCX1 0 1 or more Page 1 game selection
icon

MCX0,MCX1 0 0 (setting at left is prohibited)

CRDO 1 or more 2 File list icon

CRDO 0 *2 (setting at left is prohibited)

non-PDA *2 *2 PlayStation file set-up
screen icon

*1: This is the value equivalent to the icon page count.

*2: Based on the file header definition, this is always “00”.
Note that the frequency at which the icon is updated depends on the type of icon used.

Run-Time Library Overview CONFIDENTIAL

Table 19-8: Icon animation update frequency

PDA Library (liibmcx)

Icon used in animation

Icon update frequency (fps)

PlayStation Memory Card set-up screen
icons (2 icons)

PlayStation Memory Card set-up screen
icons (3 icons)

PDA file list icon
Game selection icon

2

6

Frequency shown in game selection icon
entry table. 30/f (fps)

Game selection function

The game selection function displays the game-selection icon and is used to start a desired PDA
application. This function will only display PDA application files (i.e., files with type "MCX0"). Each PDA file
can have more than one page, and each page can use animation with multiple icons.

Since multiple pages can be animated, it would be possible, for example, to have the first page be game
title animation, the second page be game summary animation, and the third page be animation with the

developers' names.

Figure 19-3: Game selection function

Clock [App1 \

App2 App3

I

—— !

=

Notes on icon entry table and icon image position

Always place the icon image starting address on the 128 byte boundary (LSD is 0x00 or 0x80) and use an
icon image starting address for addresses in the icon entry table.

19-11

Standard use of PDA functions

Initialization and termination

1. The PDA system is activated using McxStartCom(). PDA function-calling interrupts are enabled, and all
PDA process registration functions are available for use.

2. The McxXXX() function group is called to access the PDA.
3. McxStopCom() is used to inhibit PDA function-calling interrupts and stop the PDA system.

CONFIDENTIAL

Run-Time Library Overview

19-12 PDA Library (lilbmcx)

Using asynchronous functions

All functions that access the PDA are asynchronous functions. To access the PDA, an operation must first
be initiated (reserved) using a process registration function. McxSync() must then be used to check for
process completion. If the operation was successful, the transmit data or the data in the receive buffer will
be valid.

The following example uses McxGetTime() to get date and time information. The same procedure can be
used for all other asynchronous functions.

Call MexGet Ti me(port, buff)

2. Wait for process to finish using MexSync(0, &cnd, &result) or (! McxSync(1l, &cnd,
&result));

3. Look at result. If successful, the contents of buff are valid and can be used as calendar data.

Saving a PDA application or file list icon images file

Saving a PDA application to the PDA is similar to saving a file to a Memory Card, with a few exceptions.
After saving, McxExecFlag() should be used to embed "PDA application flag" information in the FAT. Also, in
order to avoid writing PDA application programs to alternate sectors, McxShowTrans() and McxHideTrans|()
must be used before and after the file save. ("PDA application flag" information should be embedded as
necessary. It is not required. Calling McxShowTrans() and McxHideTrans() when reading a file is also not
required.)

For McxExecFlag(), the DIRENTRY of the file is obtained with firstfile(), and member head is divided by 64
and passed as the second parameter, block. (Member head contains the header sector number of the
saved file. By dividing this by 64, the header block number can be calculated.)

Example of saving a PDA application

1. McxShowTrans(port, 1, TinmeQut);

Open file ("fil ename");

Wite file

Close file

McxHi deTrans(port, 1);
firstfile("filename", &direntry);
McxExecFl ag(port, direntry. head/ 64, 1);

Nook~WN

When saving a file with PDA file list icon images rather than a PDA application, the "original copy"
information is unnecessary, so 6.firstfile() and 7.McxExecFlag() would not be called.

Enabling the speaker, IR communication, and LED

Because power from the PlayStation to the Memory Card connector is limited, the enabling of the IR
module, speaker, and LED, which are high-current consumption hardware devices on the PDA, needs to
be controlled from the PlayStation.

The table below shows the amount of current consumed by these devices. The maximum current that can
be supplied from the PlayStation to all the Memory Card connectors is 160 mA total. McxCurrCtrl() should
be used to control the enabling of the devices so that this value is not exceeded. These restrictions must be
followed, as exceeding the maximum current may result in improper operation of the PlayStation.

Run-Time Library Overview CONFIDENTIAL

PDA Library (ibmcx) 19-13

Table 19-9: Device current consumption

Device name Current consumption
CPU chip 10mA
IR module transmitter 70mA
Speaker 20mA
LED 10mA

Device enable status is obtained for all PDAs using McxAllinfo() (for a non-Multi Tap configuration, two
places can be checked--Memory Card connectors 1 and 2, and for a Multi Tap configuration, there are
eight places--A - D for each connector). The result from McxAllinfo(), together with the table above, can be
used to calculate the current consumption for enabled devices.

If the sum of this current consumption and the current consumption of the devices to be enabled does not
exceed 160 mA, the devices can be enabled using McxCurrCtrl(). If the value exceeds 160 mA, the devices
cannot be enabled.

The user is informed that a device cannot be enabled through a message displayed on the TV screen. The
total current consumption could then be kept from exceeding 160 mA by disabling the device using
McxCurrCtrl() or disabling a device on another PDA.

CONFIDENTIAL Run-Time Library Overview

19-14 PDA Library (lilbmcx)

Run-Time Library Overview CONFIDENTIAL

Chapter 20:
Memory Card GUI Module (mcgui)

Table of Contents

Overview 20-3
Module and Header Files 20-3
Required libraries 20-3

Module functions 20-3
Save game data — McGuiSave() 20-4
Load game data — McGuiLoad() 20-5
Supported controllers 20-6
Language setting 20-6

Initialization and termination 20-6

Limitations 20-7
Number of blocks of game data 20-7
Textures 20-7
Graphics 20-8
Sound 20-8

CONFIDENTIAL Run-Time Library Overview

20-2 Memory Card GUI Module (mcgui)

Run-Time Library Overview CONFIDENTIAL

Memory Card GUI Module (mcgui) 20-3

Overview

The Memory Card GUI module (McGUI) is a program that complies with the TRC (Technical Requirements
Checklist) and provides Memory Card access functions such as load and save, along with support for the
user interface. By incorporating McGUI in user game titles, the work involved in coding the Memory Card
screen for saves, loads, etc. can be reduced.

Module and Header Files

The filename of the Memory Card GUI module is hcgui . obj . It must be linked to programs that call
McGUI module services.

In English mode, mcgui_e.obj must also be linked.

Programs that call McGUI module services must include the Memory Card GUI header file mcgui . h, which
defines structures, functions, and macros needed to use the module.

Required libraries

McGUI uses the following libraries, which must be linked to programs that use McGUI:

* Kernel library (libapi) 4.3 or later

» Basic graphics library (libgpu) 4.2 or later

» Controller/Peripherals library (libetc) 4.2 or later

* Memory Card library (libcard) 4.3 or later

» Extended Memory Card library (llomcrd) 4.5 or later
» Sound library (libspu) 4.3 or later

» Extended sound library (libsnd) 4.3 or later

Module functions

McGUI has 2 functions: McGuiSave(), which saves game data, and McGuiLoad(), which loads game data.

Before calling each function, a data structure is initialized with appropriate values. Some internal checking is
done to make sure the values are valid. However, not all conditions are checked, so invalid values may not
necessarily generate errors.

CONFIDENTIAL Run-Time Library Overview

20-4 Memory Card GUI Module (mcgui)

Save game data - McGuiSave()

This function invokes the save operation of the Memory Card screen to save game data.

Figure 20-1: Save Operation of the Memory Card Screen

Select Memory
Card Slot

Check to see if Memory
Card is not installed,
not initialized, etc.

Check Status of
Selected Slot

See if previously saved
data is present; check if
empty blocks are
present, etc.

Check Contents of
Memory Card

Save Game Data

Return to Title

Run-Time Library Overview CONFIDENTIAL

Load game data - McGuilLoad()

Memory Card GUI Module (mcgui)

This function invokes the load operation of the Memory Card screen to load game data.

Figure 20-2: Load Operation of the Memory Card Screen

Select Memory
Card Slot

Check Status of
Selected Slot

Check Contents o
Memory Card

Load Game Data

Return to Title

Check to see if Memory
Card is not installed,
not initialized, etc.

See if previously saved
data is present.

CONFIDENTIAL

Run-Time Library Overview

20-5

20-6 Memory Card GUI Module (mcgui)

Supported controllers

The following controller terminal types are supported by McGUI.

Table 20-1: Supported controllers

Terminal type Controller name Main controller model number
1 Mouse SCPH-1030

2 16-button analog SLPH-00001(Namco Corp.)

4 16-button SCPH-1080,1150,1200

5 Analog joystick SCPH-1110

7 DUAL SHOCK SCPH-1200

Gun controllers and Multi taps (except 1-A, 2-A) are not supported.

Language setting
McGui currently supports both Japanese and English.

The initial value is Japanese and this can be switched to English by executing the McGuiSetExternalFont()
function.

Initialization and termination

McGUI internally calls the following initialization functions:
* Ssinit()

e SsStart()

* ResetGraph()

e ResetCallback()

McGUI calls the following termination functions on exit:

e SsEnd()

e SsQuit()

» StopCallback()

Your application must do the following initializations before calling an McGUI function:

e |Initialize liomcrd using MemCardinit(). MemCardStart() and MemCardStop() should also be executed
when appropriate.

* |Initialize controllers with functions that set up the receive data buffers on the application side such as
INitPAD() and PadInitDirect(). The receive data buffer address should be set in the McGuiEnv structure.
Functions that cannot set up the receive buffer, such as Padinit(), are not supported.

Run-Time Library Overview CONFIDENTIAL

Memory Card GUI Module (mcgui) 20-7

Limitations

This section describes guidelines and precautions relating to the use of McGUI.

Number of blocks of game data

The block count is fixed at the number of blocks specified when data was first saved to the Memory Card
by McGUI. If saved data already exists, it cannot be overwritten by data that contains a greater number of
blocks. If the amount of saved game data is expected to increase as the game proceeds, the initial save
should be performed with the maximum block count.

Textures

Coordinates where texture data is loaded into the frame buffer (VRAM)

The coordinates where texture data is loaded are set in the TIM header information. Set the coordinates so
that they appear at the start of the texture page along with the images and CLUTs.

Using the frame buffer (VRAM)

According to the coordinates specified in the header information of the texture data (mcgui.tim), McGUI
loads the images and CLUTs to the frame buffer. The 67 lines below the start of the image loading position
are used as an internal work area. In English mode, the 64x128 dot rectangular area to the right of the
image loading area is used as the external font area.

Figure 20-3: Location where textures are loaded in the frame buffer

eas ol eas

mcgui.tim External font 128lnes

T

67 Ines
__________________ Ly

Texture data always uses 128 x 128 8-bit CLUT mode. The coordinates and sizes of titles and mouse
cursors are also fixed.

The following is the texture data (mcgui.tim) used by McGUI.

CONFIDENTIAL Run-Time Library Overview

20-8 Memory Card GUI Module (mcgui)

Figure 20-4: mcgui texture data structure

(128 x 128 pixels, 8-bit CLUT mode)

Graphics

The screen resolution is fixed at 320 x 240. Since drawing is performed with double frame buffers, the
rectangular region (0,0)-(319,479) in the frame buffer will be destroyed.

Sound
When creating SEQ data:

» SEQ data will always be played at TICKE0. SEQ data should be created presuming TICKE0.
* The maximum number of simultaneous voices is 23. The 24th voice is reserved for special effects.

When creating sound effects (sfx) data: sfx data is played back using the SsUtKeyOnV() function with
note:60 fine:0. SE data should be created so that it will be played back properly at note:60 fine:0.

Note: The contents of the sound buffer are not guaranteed once McGUI completes. After completion,
waveform data should be transferred as needed.

Run-Time Library Overview CONFIDENTIAL

	RUN-TIME LIBRARY OVERVIEW
	August 1999
	Changes Since Last Release
	Table of Contents
	List of Figures
	List of Tables

	About This Manual
	Changes Since Last Release
	Related Documentation
	Manual Structure
	Developer Reference Series
	Typographic Conventions
	Developer Support

	CH 1: Overview of the PlayStation OS
	The PlayStation OS
	Features of the PlayStation OS
	Programming in C
	Easy Access to the Features of the R3000
	Small Size, Emphasis on Performance
	Provision for Hardware Functions
	Single and Multitasking
	The File System Device Driver

	Starting and Operating the OS
	Activation of the OS
	Boot Sequence

	PlayStation OS Library Components
	libapi (Kernel Library)
	libc/libc2 (Standard C Libraries)
	libmath (Math Library)
	libcard (Memory Card Library)
	libmcrd (Extended Memory Card Library)
	libpress (Data Compression Library)
	libgpu (Basic Graphics Library)
	libgte (Basic Geometry Library)
	libgs (Extended Graphics Library)
	libcd (CD/Streaming Library)
	libds (Extended CD-ROM Library)
	libetc (Peripherals Library)
	libtap (Multi Tap Library)
	libgun (Gun Library)
	libpad (Controller Library)
	libcomb (Link Cable Library)
	libsnd (Extended Sound Library)
	libspu (Basic Sound Library)
	libsio (Serial Input/Output Library)
	libhmd (HMD Library)
	libmcx (PDA Library)
	mcgui (Memory Card GUI module)

	CH 2: Kernel Library
	Overview
	Library and Header Files
	System Designation File
	System Table Information (ToT)
	Descriptors
	Callbacks
	Inhibition of Interrupts
	Interrupt Context
	Kernel Reserved Memory Areas

	Root Counter Control
	Counter Timing
	Mode
	Gate
	Status Immediately After Kernel Starts
	Root Counter and Critical Section
	Use of the Root Counter by the Kernel

	Events
	Cause Descriptor and Type of Event
	Event Handler
	Event Status
	Mode
	Event Creation
	Clearing an Event
	User-Defined Event

	Threads
	Context and TCB
	Status Immediately After Kernel is Started
	Thread Open and Switching Execution TCB
	Interrupts and TCB
	TCB Status
	Register Specification Macros

	I/O Management
	CD-ROM File System
	Memory Card File System
	Standard I/O Stream

	Module Control
	Execution File Data Structure

	Controller Features
	Initialization
	Buffer Data Format

	Kanji Fonts
	Data Format
	Usage Example

	Memory Allocation

	CH 3: Standard C Library
	Overview
	Library and Header Files

	CH 4: Math Library
	Overview
	Library and Header Files

	Floating-Point Numbers
	Error Processing
	Error Types
	Internal Processing at the Time of an Error
	Error Event
	Error Variable

	CH 5: Memory Card Library
	Overview
	Library and Header Files

	Memory Card
	Hardware
	Events

	BIOS
	Testing for Card Presence and Testing Logical Formats
	Unconfirm Flags
	Card Test
	Use with the Multi Tap

	File System
	Realtime Access
	Rules for Use of Memory Card
	Abnormal Processing
	Terminology
	File Names
	File Headers
	Written Data Contents Protection
	Handling Communications Errors

	Other
	Coding Notes
	Known Bugs

	CH 6: Extended Memory Card Library
	Overview
	Library and Header Files
	Features of the Library
	Checking Memory Card Status
	Reading/Writing Data
	Detecting a New Card

	Libcard and the Card BIOS
	Use with Multi Tap
	The Memory Card
	Hardware

	Rules for Using the Memory Card
	Handling Irregularities
	Terminology
	File Names
	File Header
	Saving Write Data

	CH 7: Data Compression Library
	Overview
	Library and Header Files

	Compressor and Decompressor Functions
	MDEC
	Compression of Image Data
	DCT (Discrete Cosine Transform)
	BVQ (Block Vector Quantization)
	Huffman Encoding

	DCT (Discrete Cosine Transform)
	Basic Principles
	Methods Supported
	Asynchronous Decoding
	Callback
	Playing Movies with the CD-ROM
	Direct Transmission and Texture Transmission
	Encoding by Means of the Local Environment

	BVQ (Block Vector Quantization)
	CLUT Vector Quantization

	Huffman Encoding
	Compression of Sound Data

	CH 8: Basic Graphics Library
	Overview
	Library and Header Files

	Graphics System
	Frame Buffer Addressing
	Display Area and Drawing Area
	Drawing Environment
	Display Environment
	Display Area and Screen Area
	Switching Display and Drawing Environments (Double Buffer)
	Blocking Functions and Non-Blocking Functions
	Drawing Primitives
	Special Primitives
	Primitive Expression Format
	Initializing Primitives and Setting Their Members
	Primitive Attributes
	Combining Primitives
	Executing Primitives
	Primitive Drawing Rules

	Ordering Tables
	Registering Primitives in the OT
	Registering Special Primitives
	Linking Primitives Without an OT
	Ordering Tables and Z Sorting
	Reverse OT
	Combining with Geometry Functions
	Multiple OTs

	Synchronization and Reset
	Reset
	Synchronization

	Packet Double Buffer
	Asynchronous Double Buffer

	Texture Mapping
	Texture Pattern Format
	Texture-Mapping Primitive Brightness Values
	Repeating Texture Patterns

	Primitive Rendering Speed
	Access Rules
	Clipping
	Structure of the Texture Cache

	Primitive Division
	Texture Mapping Distortion
	Texture Cache Mistakes
	Clip Overhead
	Primitive Division

	Debug Environment
	Debug Mode
	Debug String
	High-Level Library Interface

	Cautionary Programming Notes
	Texture Polygon Coordinate Specification
	Handling PAL Format
	Timing for Updating the Frame Buffer
	VSync Synchronization in Interlace Mode
	GPU timeout message

	CH 9: Basic Geometry Library
	Overview
	Library and Header Files

	Theoretical Geometry Operations Using the Basic Geometry Library
	Coordinate Calculation
	Light Source Calculation
	Normal Line Vector, Light Source Vector Direction
	GPU Code
	Normal Line Clipping
	Normal Line Clipping Function

	Depth Cueing
	Implementation of Depth Cueing (Common Operations)
	Depth Cueing Using Vertex Colors
	Depth Cueing Using Textures

	Material Light Source Calculation with Material Quality
	Functions with Three or Four Vertices
	libgte Argument Format
	Recommended Format

	Libgte Function Flag Variables
	About libgte Mesh Functions
	Changing Screen Offsets
	PMD Functions
	PRIMITIVE Group
	TYPE Packet Data Configurations
	VERTEX

	SMD, RMD Functions
	Polygon Division

	CH 10: Extended Graphics Library
	Overview
	Library and Header Files
	Libgs features

	Coordinate Systems
	Order of Rotation/Translation
	Clearing Flags
	Examples of Coordinate System Setting

	Objects
	Object Initialization
	Object Movement (Hierarchical Structuring)
	Object Attribute Control

	Viewing System
	Viewpoint Setting
	Screen Setting

	Light Sources
	Parallel Light
	Ambient Light
	Depth Cueing
	Material Lighting

	Drawing Priority Order (Ordering Table)
	GsOT and GsOT_TAG
	OT Initialization
	Multiple OTs
	OT Compression
	Z-Sort Problem
	OT Double Buffer

	Frame Double Buffer
	Double Buffer Expression
	Frame Double Buffer During Interlace

	Clipping
	Two-dimensional Clipping
	Three-dimensional Clipping
	Near Clipping Problem

	Packet Preparation Function
	Packet Buffer
	Preset Packets
	TMD Sort
	Packet Creating Functions

	Packet Area
	Packet Double Buffer

	Drawing
	Processing Flowchart

	Jump Tables
	Purpose
	Usage

	Scratch Pad Usage Volume
	Scratch Pad Consumption Status
	Scratch Pad Consumption Volume
	Method for Common Use of Scratch Pad by the User Program and Library

	Mip-map Library
	Usage Method
	Texture Location
	Polygon Vertex

	CH 11: CD/Streaming Library
	Overview
	Library and Header Files

	CD-ROM Sectors
	Audio Sectors
	Data Sectors
	ADPCM Sectors
	Interleave

	Addressing (Location Specification)
	Tracks
	Absolute Sectors
	File System

	Transfer Rate
	Sector Buffer

	Sound Control
	Primitive Commands (Low Level Interface)
	Command Arguments (Parameters)
	Command Return Value (Result)
	Command Overview

	Command Synchronization
	Command Execution Status
	Command Synchronization Callbacks
	CdControlF Interface

	Data Read
	Retry Read and No-Retry Read
	Sector Ready Synchronization
	Data Ready Synchronous Callback
	Sector Buffer Transfer
	Sector Transfer Synchronization

	High-Level Interface
	Data Read
	Data Read Synchronization

	ADPCM
	Multichannel

	Position-Confirmation Utility
	TOC Read
	Directory Read
	Report Mode

	Event Services
	Callback, Synchronous Function Overview
	Special CD-ROM Notes
	Notes on Disc Access
	The Outer Three Minutes Problem
	Notes on Using Low Level Function Groups
	Operations Required for Swapping CDs
	Warnings Regarding Changing the Motor Speed in the CD Subsystem
	Noise during CD-DA/XA playback
	Libcd Message Reference

	Streaming Library Overview
	Streaming
	Synchronization Control
	Ring Buffer
	Ring Buffer Format
	Memory Streaming
	Interrupt Control of 24-Bit Movie Playback Time
	Interrupt Functions Used

	CH 12: Extended CD-ROM Library
	Overview
	Library and Header Files

	Description of libds
	Description
	Relationship with libcd
	Streaming Functions
	libapi Functions

	Differences from libcd
	Primitive Commands
	Structures
	Functions
	Processing Speed
	Compatible Functions

	Initialization and Exit
	System Initialization
	Resetting after Initialization
	Exiting the System
	Caution

	The Command Queue
	Issuing Commands
	Confirming Completion of Command
	Checking Command Queue Status
	Timing
	Error Operations
	Callbacks
	Multiple Operations

	Command Packets
	Issuing Command Packets
	Checking for Completion
	Timing
	Error Operations

	The Simple Callback
	Features of the Simple Callback
	Recovery Behavior
	Description of Callback Function
	Exiting the System
	System Operation when Opening and Closing the CD Cover
	Caution

	Other
	Opening and Closing the CD Cover
	Notes Regarding Swapping of CDs
	Transfer Speed Change
	Pre-seeking
	Performing a Continuous Read to Access Multiple Files
	The Outer Three Minutes Problem
	Notes Regarding DslPlay, DslReadN, DslReadS
	Completion of Data Reads
	Noise during CD-DA/XA playback

	CH 13: Controller/Peripherals Library
	ETC Library Overview
	Library and Header Files

	Callbacks
	Callback Types
	Callback Initialization
	Callback Termination
	Callback Pointers
	Multiple Callbacks
	Default Callbacks and Events
	Controller
	Video Mode
	Programming Notes

	Controller Library
	Library and Header Files
	Additional Features Available for DUAL SHOCK Controllers
	Receive Buffer Data Format
	Obtaining the Horizontal and Vertical Position with the Gun Interrupt (Terminal Type=3)
	Initialization
	Precautions

	Multi Tap Library
	Library and Header Files
	Overview

	Gun Library
	Library and Header Files
	Button Data
	Location Data in the Horizontal/Vertical Direction on the Screen
	Correction to Location Data in the Horizontal Direction on the screen
	Memory Card

	CH 14: Link Cable Library
	Overview
	Library and Header Files

	Driver and BIOS
	Link Cable Driver
	Events
	Wait Callback
	Termination Conditions for Synchronous Input/Output
	Interrupt and Read/Write Functions
	Number of Characters for Receiving
	Error Processing
	BIOS
	Serial Controller
	Communication Specifications
	Control Line Transition

	Programming Hints
	Detecting the Other PlayStation’s Connection (1)
	Detecting the Other PlayStation’s Connection (2)
	Background Receiving by the Ring Buffer
	Slow Speed of Asynchronous Write
	Lightest Overhead Transmission
	Unit-Number of Characters for Receiving with the Exception of One Character

	CH 15: Extended Sound Library
	Overview
	Library and Header Files

	Score Data
	SEQ Data Format
	SEP (Sequence Package) Data Format

	MIDI Support
	Setting VAB Attribute Data Using Control Change
	Using Control Changes to Set Repeating Loops within Music
	Marking Function Using Control Changes
	VAB Switching Using Control Change

	Sound Data
	VAG Format
	VAB Format

	Function Execution Sequence

	CH 16: Basic Sound Library
	Overview
	Library and Header Files

	VAG Format
	Header
	Intro
	VAG Body
	SPU IRQ Clear Block

	Voice Audio Source
	Noise Audio Source
	LFO in Intervals
	Reverb
	Data Transfer Between Memory and Sound Buffer
	Interrupt Request for Sound Buffer Access
	Sound Buffer Memory Management
	Mixing CD and External Digital Input
	Transferring Data Decoded by SPU to Main Memory
	Initializing, Starting and Stopping SPU Processing
	Basic Operations
	Waveform Data Processing
	Four States in the SPU Streaming Library
	Callback Functions
	Stream Processing
	Actual Flow of Stream Processing
	Completion

	Basic Sound Library and Extended Sound Library Common Uses
	Initialization
	Sequence Data
	Sound Generation/libsnd Voice Manager Function
	Transfer to the Wave Pattern Data Sound Buffer
	Sound Buffer Memory Control and Reverb
	Applying Reverb to Voices Using Libspu and Libsnd
	Noise during CD-DA/XA playback

	CH 17: Serial Input/Output Library
	Overview
	Library and Header Files

	Driver and BIOS
	Serial I/O Driver
	BIOS

	CH 18: HMD Library
	Overview
	Library and Header Files

	Basic Architecture
	HMD Features
	Hierarchical structures
	Polygon/MESH
	Shared polygons (one-skin model)
	Animation
	MIMe
	Other Features

	Hierarchical Coordinate Systems and Process Flow
	Basic Data Structures
	Primitives
	Primitive Sets
	Primitive Headers
	Sections

	Primitive drivers
	Information that can be accessed from the primitive driver
	Information that should be returned to the framework

	MIMe Primitive Structure
	Notations used in diagrams

	Addendum A: Migrating from TMD to HMD
	Addendum B: Installation status of HMD primitive drivers

	CH 19: PDA Library (libmcx)
	Overview
	Library and Header Files

	Library functions
	Checking PDA status
	Detecting new cards

	Conflicts with other libraries
	Conflicts with use of libcard, libmcrd and card BIOS
	Constraints between libmcx and libpad, libapi controller functions and libcard

	PDA
	Hardware

	Guidelines for using the PDA
	Terminology
	File names
	File header

	Icons
	Icon types
	File list function
	Game selection function
	Notes on icon entry table and icon image position

	Standard use of PDA functions
	Initialization and termination
	Using asynchronous functions
	Saving a PDA application or file list icon images file

	Enabling the speaker, IR communication, and LED

	CH 20: Memory Card GUI Module (mcgui)
	Overview
	Module and Header Files
	Required libraries

	Module functions
	Save game data – McGuiSave()
	Load game data – McGuiLoad()
	Supported controllers
	Language setting

	Initialization and termination
	Limitations
	Number of blocks of game data
	Textures
	Graphics
	Sound

