Reliable LoadExecs

<>

PlayStation™

Topics Covered

» LoadExec Explained

® What is LoadExec
® Advantages

® Uses

® Internally

» Disadvantages of LoadExec

» Alternatives to LoadExec

® Overlays
® Load then Exec

» Q&A

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

LoadExec Explained

What i1s Load Exec?

» LoadEXxec Is a Libapi function that loads an
executable from CD into main memory and
jumps to the program entry.

® Calls Load and Exec Internally
® Executes from ROM
® Loads child over parent

| ong LoadExec(nane, s addr, s _size)

char *nane; /*executabl e nane*/
unsigned long s addr, s _size;/*stack val s*/

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

What I1s LoadExec?

O0x801FFFFF

parent
executable

0x80010000

0x80000000

stack |
(parent ->child)

heap

bss group

text group

A

System Area

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

child’s program entry point

What Is LoadExec?

» PSX Executable format @s defined in kernel.h)
struct XF_HDR {
char key[8]; /* key code*/
unsigned long text; /* size of text sectioin*/
unsigned long data; /* size of data section*/

struct EXEC exec: /* executable info*/
char title[60]; /* license code */

Header(2048 bytes beginning with XF_HDR)

text section

multiple of 2048 bytes data section (initialized)
A 4

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

What Is LoadExec?

» PSX Executable format @s defined in kernel.h)

struct EXEC {
unsigned long pcO;
unsigned long gpo;
unsigned long t addr;
unsigned long t_size;

unsigned long d_addr;
unsigned long d_size;
unsigned long b_addr;
unsigned long b_size;
unsigned long s _addr;
unsigned long s_size;
unsigned long sp,fp,gp,ret,base; /*register shunt area*/

/*Initial value of the program counter*/
/*global pointer*/
/* start address of the text group*/
/*size of the text group*/
/*system reserved*/
/*system reserved*/
/*start of the bss group*/
/*size of the bss group*/
/*lead address of the stack*/
/*stack size*/

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

Advantages

» Allows applications to overcome the 2 MB barrier
» Child processes may use all of Memory
» Allows parallel development

» Easy to implement

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

| oadExecs Uses

» Demos/Samplers
» Multi-disc titles

» To move between exclusive segments of a game

® Intro -> game
® Levels
® Cinematic sequences

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

LoadEXxec Internally

» Saves the current stack values
» Calls ExitCriticalSection()
» Calls Load()

addr = exec.s_ addr;
Si ze = exec.S_sSi ze;

EX|tCr|t|caI Section();

| f (Load(fn, &xec) ==1)

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

LoadEXxec Internally

» Load()

® Fills in system maintained EXEC struct exec, with the
requested executable's information.

® Loads text group to exec->t_addr

® Calls FlushCache()
- Bad to do outside of a critical section

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

LoadEXxec Internally

» If Load() falils...
® Attempts to Load() default executable

» If Load() Is successful...

» Calls Exec()

® Passing the address of the system EXEC exec as an
argument

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

LoadEXxec Internally

» Exec()

® Saves sp, gp, fp, ra registers to shunt area in exec
P, gp, 1P

® Clears bss

« If exec->b_size '= 0, the programs bss group is cleared using
exec->b_addr and exec->b_size

® Sets-up stack
- If exec->s_addr !'= 0, set sp and fp to exec->s_addr + exec->s_size

® Shifts a2->al->a0 to allow retrieval of arguments
® Pushes exec->pc to a temp reg and does a ja on that reg

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

Disadvantages of LoadEXxec

Disadvantages of LoadEXxec

» When invoking:
® All interrupts must be stopped
® Must call 96 _init()

* slow

» Difficult to pass data between processes

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

Disadvantages of LoadEXxec

» Once called all control is relinquished

® No error handling

 Load() must successful on first try

» read() done within in Load also only gets one shot

® No returning to parent

® Not because parent Is overwritten, but...

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

Disadvantages of LoadEXxec

» If Load() fails on the requested executable...
and...
Load() fails on the default executable...

» LoadExec enters an infinite loop!!!
* while(1) {}

ENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

Disadvantages of LoadEXxec

» The Moral of the Story is...

There 1s no 100% reliable LoadExec()

Alternatives to LoadExec

Alternatives to LoadExec

» Overlays

» Load then Exec

Overlays

» A method of linking portions of your code
and data to the same memory location then
swapping them in and out as needed.

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

Overlays

Ox801FFFFF
stack
shared
heap
overlay
overlay -
load address
parent
executable
0x80010000
System Area
0x80000000

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

Overlays

» Advantages.
* Not necessary to stop interrupts.

® A separate process can be executed while the
child is loading.

® Can pass arguments and share data.
» Disadvantages:
®* The make operation is more complex.
® The two processes must share memory.
® Processes must be exclusive.

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

| oad then Exec

» Application calls Load() to get executable
from CD Into main memory, then calls
Exec() to pass control to that executable.

ENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

_oad then Exec

OXBOLEFFEE parent’s stack
child’s stack
heap
child
executable
child’'st addr —
parent
executable
0x80010000
System Area
0x80000000

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

| oad then Exec

» Advantages:
® Allows for parallel development

® More control

 Allows for error handling
« Application can use own loading scheme i.e. CdRead

® Return to parent is possible
® Easier data sharing

» Disadvantages:
® Interrupts must be stopped
® Two copies of Libraries
® Parent and child must operate in limited memory

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

| oad then Exec

> Implement loader scheme

® Small piece of code that exist only to load and
launch larger modules.

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

| oad then Exec - Loader

» Loader
®* small

® linked just after System Area or in other "safe"
region
» Child modules
® Link just beyond loader

® Link with none2.obj and explicitly set stack
below Loader's stack

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

TIps...

» Parent exit procedures
® ResetGraph(0) or (3)
® CardStop()
® PadStop()
¢ StopCallback()
® CloseEvent()
® 96 Init
® LoadExec() or Load()

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

TIps...

» If Load()

® 96 remove

® EnterCriticalSection()
® FlushCache()

® Exec()

» Child start up procedures

® ResetCallback()
® CdInit()
® InitPAD()

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

TIps...

» If using Load then Exec

® Repeat child start-up procedures upon return to the
parent

» LoadTest(char *name, EXEC exec)

® Loads EXEC portion of executable header
® Returns 0 in case of failure
® Call prior to Load() or LoadExec()

® retry if failure

® if retries unsuccesful inform user to change or clean
disc

CONFIDENTIAL PlayStation Developer Seminar /Summer '97 /Reliable LoadExecs

Tips...

» Burn CD’s at single speed

Q&A

The End

