
CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New High-level Memory Card Library

New High-level MemoryNew High-level Memory
Card Library (LibMcrd.lib)Card Library (LibMcrd.lib)

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Overview…..Overview…..
What is a “Memory card”?

What is LibMcrd?

The old way...

The new way…

Standard operations with LibMcrd

Submission to Third Party QA

Caveats

Q & A

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

What is the Memory Card?What is the Memory Card?

The PlayStation Memory Card
Read/write memory

Removable

Shared

Used to
save scores, game position, player names, options etc.
as dongle for pre-release protection

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

What is a Memory card?What is a Memory card?

Specification
Capacity:

120 KB formatted

Protocol:
Synchronous Serial communication
Shared with the controller

Access:
Hardware - Max = 10 KB/sec
BIOS - 128 bytes/ 2 Vsyncs

Device Name:
“buXX” Where X is the port number + card number.
Port number - A: 0x00 B: 0x10
Card number usually 0

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Serial controllerSerial controller

Slot 1Slot 1 Slot 2Slot 2

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

TerminologyTerminology
Sector

128 bytes. All read/write access are done in Sector units.
Block

8192 bytes. 64 Sectors. The minimum amount of space used by one file.
16 to a card, but only 15 available to applications. Often used to describe a
sector.

Slot
File position. 15 to a card. Basically the same as a block.

Format
Same as formatting other storage devices. All new cards must be
formatted. Can confirm via _card_load or MemCardAccept.

unconfirmed flag
Bit on Memory card which is set every time a card is inserted. Must be
cleared by software using _card_clear or MemCardAccept.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Terminology (2)Terminology (2)
File header

128 - 512 byte header that must be placed at the beginning of all Memory card
files. Contains number of blocks, number of icons, icon data, etc.

Save File Name
The name of a a file as stored in the Memory card directory structure

Save Title
16 character (double-byte) Shift-JIS string at beginning the 5th byte of a of a
Memory card file

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

What is LibMcrd?What is LibMcrd?

New to Version 4.0 of the PlayStation Libraries.

Provides High-Level routines for easy Memory
card handling.

Automates many of the operations previously
performed at application level using LibCard.

Combines LibCard and file-handling routines in
one easy-to-use function library.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

What is LibMcrd?What is LibMcrd?

LibMcrd features:
Asynchronous status checking, reads, and writes
Automatic event set-up and handling
Automatic error Retry
File deletion
File creation
Directory entry Retrieval
Formatting

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

The Old Way, LibCard…The Old Way, LibCard…

Low-Level interface
Manual event setup and handling

Explicit initialization of file-system

Manual detection of card insertion and removal

open(), read(), and write() are used for file access
must ensure 128 byte aligned reads and write
must do bit Shifting to create a multi-slot file
must prepend file name with device name

Must use firstfile/nextfile to obtain directory entries

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

The New Way, LibMcrd...The New Way, LibMcrd...

LibMcrd High-Level Interface
Memory card BIOS and file system are setup in one.

function call.

Events are setup and activated with one function call.

For file access, device name no longer needs to be.

prepended to file name.

On creation file size is specified in block units.

File Access not allowed with an unconfirmed card.

One function call to retrieve directory entries.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

The Old Way….The Old Way….
Fundamental Steps
1)1) Install event handlers via

OpenEvent()
2)2) InitCard
3)3) StartCard
4)4) _bu_init
5)5) EnableEvents
6)6) _card_info
7)7) Get result via TestEvent()

if(NEWCARD) _card_clear;

8)8) _card_load
9)9) Get result via TestEvent()

 TestEvents

_card_load

TestEvents

_card_info

EnableEvent

_bu_init

StartCard

InitCard

OpenEvents

 TestEvents

_card_load

TestEvents

_card_info

EnableEvent

_bu_init

StartCard

InitCard

OpenEvents

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

The New Way, LibMcrd...The New Way, LibMcrd...

Fundamental Steps
1) MemCardInit
2)2) MemCardStart
3)3) MemCardAccept
4)4) MemCardSync

 5 Steps less then LibCard!!!
MemCardSync

MemCardAccept

MemCardStart

MemCardInit

MemCardSync

MemCardAccept

MemCardStart

MemCardInit

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

General Program Flow, Old Vs NewGeneral Program Flow, Old Vs New

TestEvents

_card_info

EnableEvent

_bu_init

StartCard

InitCard

OpenEvents

TestEvents

_card_info

EnableEvent

_bu_init

StartCard

InitCard

OpenEvents

MemCardSync

MemCardAccept

MemCardStart

MemCardInit

MemCardSync

MemCardAccept

MemCardStart

MemCardInit

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

LibMcrd functionsLibMcrd functions

MemCardAccept
MemCardCallback
MemCardClose
MemCardCreateFile
MemCardDeleteFile
MemCardEnd
MemCardExist
MemCardFormat
MemCardGetDirEntry

MemCardOpen
MemCardReadData
MemCardReadFile
MemCardStart
MemCardStop
MemCardSync
MemCardWriteData
MemCardWriteFile
MemCardInit

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

LibMcrd function description - briefLibMcrd function description - brief
MemCardAccept ------------------> Test Port/Card Status
MemCardCallback ------------------> Registers user-defined callback
MemCardClose ------------------> Closes last file opened
MemCardCreateFile ------------------> Creates a Memory card file
MemCardDeleteFile ------------------> Deletes an existing file from card
MemCardEnd ------------------> Shuts-down LibMcrd system
MemCardExist ------------------> Checks to see if a card is present
MemCardFormat ------------------> Formats Memory card
MemCardGetDirEntry ------------------> Retrieves directory info for file(s)
MemCardOpen ------------------> Opens memory card file
MemCardReadData ------------------> Reads blocks from file into memory
MemCardReadFile ------------------> Reads specified file into memory
MemCardStart ------------------> Activates LibMcrd system
MemCardStop ------------------> Halts LibMcrd system
MemCardSync ------------------> Gets sys status or blocks async func.
MemCardWriteData ------------------> Writes to individual blocks
MemCardWriteFile ------------------> Writes to specified file to card
MemCardInit ------------------> Initializes LibMcrd system

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Asynchronous OperationsAsynchronous Operations

The following functions are asynchronous:
MemCardExist
MemCardAccept
MemCardReadData
MemCardReadFile
MemCardWriteData
MemCardWriteFile

When called the related operation is registered in a LibMcrd
system structure and the registration status is returned.

1 : operation registered successfully
0 : registration failed

Registered operations are executed at VSync

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Asynchronous OperationsAsynchronous Operations
Only one asynchronous operation may be registered at a time.

Attempting to register multiple asynchronous operations will result
in the following message being printed and an immediate return with
a value of 0 :

"Access Denied. : event multiple open\n"

Upon successful registration of an Asynchronous function, the result

of the previous operation is cleared.

Therefore if registration fails you may want to retrieve the result of

last operation before registering another .

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Asynchronous OperationsAsynchronous Operations

LibMcrd provides two ways to determine the
results of asynchronous operations

Polling
MemCardSync

Callback
Register exit callback via MemCardCallback

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Asynchronous operationsAsynchronous operations

Macros for function types:

#define McFuncExist (1)
#define McFuncAccept (2)
#define McFuncReadFile (3)
#define McFuncWriteFile (4)
#define McFuncReadData (5)
#define McFuncWriteData (6)

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Asynchronous OperationsAsynchronous Operations

Macros for operation results:

#define McErrNone (0)
#define McErrCardNotExist (1)
#define McErrCardInvalid (2)
#define McErrNewCard (3)
#define McErrNotFormat (4)
#define McErrFileNotExist (5)
#define McErrAlreadyExist (6)
#define McErrBlockFull (7)
#define McErrExtend (0x8000)

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

PollingPolling

long MemCardSync(long mode, u_long *cmds, u_long
*result)
Arguments

mode
0 : Wait. Block until completion of asynchronous operation

1 : No Wait. Get status an return.

cmds
Address at which to store ID of last async operation.

result
Address at which to store result of last operation.

Return Value
0 : still active
1 : terminated
-1 : No process registered

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

CallbackCallback

MemCB MemCardCallback(MemCB func)
callback format:

func_name(unsigned long cmds, unsigned long result)
cmds

Macro indicating the last asyncrhonous function completed.

result
 The result of the function specified in cmds.

typedef void (*MemCB)(unsigned long cmds, unsigned long rslt);

Asynchronous
Return Value

the address of the previously registered callback

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Initializing/Activating LibMcrdInitializing/Activating LibMcrd

Initialization is performed with:

MemCardInit

Activation is performed with:

MemCardAccept

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Initializing LibMcrdInitializing LibMcrd

void MemCardInit(long val)
Initializes LibMcrd system.

val specifies wether or not access shared with controller
0 : Not shared
1 : Shared

Synchronous
Internally:

InitCARD(val)
StartCARD()
_bu_init

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Checking Status of the Memory CardChecking Status of the Memory Card

/*Check card status, and clear card */
MemCardAccept(chan);

/* Get te results of MemCardAccept */
MemCardSync(0,0,&rslt);

/* If result is an error other than NewCard */
if(rslt!=McErrNone && rslt!=McErrNewCard) {

...

...
}

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Initializing LibMcrdInitializing LibMcrd

void MemCardInit(long val)

val should be 0 when using LibTap or LibGun

Should be called after InitPAD, InitGUN, InitTAP

If val is 1 it is not necassry to call StartPAD

Only call once

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Activating LibMcrdActivating LibMcrd

void MemCardStart(void)
After initializing the memory card system with
MemCardInit this activates it.

Synchronous
Internally

EnterCriticalSection
Opens and Enables 4 HwCARD events and 4 SwCARD events

ExitCriticalSection
VSyncCallback(_call_back_handler)

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Initializing/Activating the MemoryInitializing/Activating the Memory
CardCard

ResetCallback();
SetDispMask(0);
ResetGraph(0);
SetGraphDebug(0);
InitPAD(0);

/*Initialize Memory card*/
MemCardInit(1);
/*Activate Memory card*/
MemCardStart();

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Writing to the Memory cardWriting to the Memory card

The following functions are used to write data
from main memory to the card

MemCardWriteData

MemCardWriteFile

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Writing to the Memory cardWriting to the Memory card

long MemCardWriteData(u_long * adrs,long
offset,long byte)

Writes data at adrs to Memory card file previously opened

with MemCardOpen().

Must specify byte in 128 byte units else function will return with 0.

Asyncrhonous

1 Vsync + 130 Vsyncs per block

Internally

calls lseek, write()

retries 16 times

Value Macro Status

0x00 McErrNone Normal exit
0x01 McErrCardNotExist No Card
0x02 McErrCardInvalid Comm. error
0x03 McErrNewCard New Card

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Writing to the Memory cardWriting to the Memory card

long MemCardWriteFile(long chan, char *file, u_long
*adrs, long offset, long bytes)

Writes data at adrs to the Memory card file specified by file.

file must exist.

Must specify byte in 128 byte units else function will return with 0.

Asyncrhonous

1 VSync + 130 VSyncs per block

Internally:

calls open, lseek, write

retries 16 times

Value Macro Status

0x00 McErrNone Normal exit
0x01 McErrCardNotExist No Card
0x02 McErrCardInvalid Comm. error
0x03 McErrNewCard New Card
0x05 McErrFileNotExist File not found

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Writing to the Memory cardWriting to the Memory card

Prior to write:

confirm card status

determine free space

maybe calculate checksum

Following write:

Check result and retry on error

Should do checksum test

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Reading from the Memory cardReading from the Memory card

The following function are used to read data from
the card into main memory:

MemCardReadData

MemCardReadFile

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Reading from the Memory cardReading from the Memory card

long MemCardReadData(u_long *adrs, long offset,
long bytes)
Reads data to adrs from the Memory card file previously
opened with MemCardOpen().

Must specify byte in 128 byte units else function will return with 0.

Asyncrhonous

1 Vsync + 130 Vsyncs per block

Internally

calls lseek, read()

retries 16 times

Value Macro Status

0x00 McErrNone Normal exit
0x01 McErrCardNotExist No Card
0x02 McErrCardInvalid Comm. error
0x03 McErrNewCard New Card

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Reading from the Memory cardReading from the Memory card

long MemCardReadFile(long chan, u_long *adrs,
long offset, long bytes)
Reads data to adrs from Memory card file specified with
file

Must specify byte in 128 byte units else function will return with 0.

Asyncrhonous

1 Vsync + 130 Vsyncs per block

Internally

calls lseek, read()

retries 16 times

Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist No Card
0x02 McErrCardInvalid Comm. error
0x03 McErrNewCard New Card
0x05 McErrFileNotExist File not found

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Reading From the CardReading From the Card

if(MemCardReadData((long *)&cardd->head[i],0,HEAD_SIZE) == 0)
 {
 printf("\nMemCardReadData : not registered");

return -1;
 }

 MemCardSync(WAIT,&cmds,&result);
 switch(cmds)
 {
 case McFuncReadData:
 {
 switch(result)

{
case McErrNone:
break;

}
 }break;

if(MemCardReadData((long *)&cardd->head[i],0,HEAD_SIZE) == 0)
 {
 printf("\nMemCardReadData : not registered");

return -1;
 }

 MemCardSync(WAIT,&cmds,&result);
 switch(cmds)
 {
 case McFuncReadData:
 {
 switch(result)

{
case McErrNone:
break;

}
 }break;

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Submission to Third-Party QA...Submission to Third-Party QA...

Most common reasons for failing submission

Incorrect save file name

Failing to default to “No” when asking for format
confirmation

ASCII characters in the file name

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Submission to Third-Party QASubmission to Third-Party QA

Save Title
The Save Title stored at the 5th byte of the file
header must be in all Shift-JIS format. No ASCII
characters. To do this:

Use function provided in sample program asc2sjis to
convert at run-time or if practical convert before and
hard-code.

remember to swap high and low bytes of Shift-JIS character

Verify Title using the Memory Card Manager program.

Save Title should not exceed 16 characters, for proper
display on OSD.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Submission to Third-Party QASubmission to Third-Party QA

Save File Name
“Each Title receives a unique file name that is determined
by the region the game was developed for mixed with the
product code number”

 Information on other regions can be found in TRC

BASLUS-XXXXXMECH1

Region Code
 (US/SCEA)

Product Code Save name
 (optional)

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Submission to Third-Party QASubmission to Third-Party QA

Formatting
When the program encounters an unformatted
card the following steps must be performed:

Clearly state that the card is unformatted and ask if the user
wishes to format the card.

Display “Yes” or “No”. With “No” as the default selection.
The button used to confirm a format should differ from the button
that brought the user to the format prompt.

Format Card

Save Game
Inform user of Save status.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Submission to Third-Party QASubmission to Third-Party QA

Formatting
Do not allow the user to explicitly format a memory
card.
In general, do all you can to avoid an accidental format

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

CaveatsCaveats

InitCARD(int val)
In 3.5 and earlier this must be executed in a critical
section

If an interrunpt occurs during InitPad it may fail/crash
In 3.6 and up this has been prevented internally by entering
critical section

Call after InitPAD
val should be 0 when used with Libtap or Libgun

After creating a file with open() close it before
accessing with read() or write()

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

CaveatsCaveats

long _card_chan(void)
In Lib 3.5 and 3.6 it is prototyped in kernel.h as void
_card_chan(void), erroneously

format() will always return 1 regardless of success
or failure

Check for card presence and status prior to calling
confirm format afterwards by checking first 2 bytes of
first block for “MC”

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

CaveatsCaveats

Proper initialization order
ResetCallbacks
ResetGraph
Initialize the pad
Initialize the card
Start card
Open events
Enable event

Proper shutdown order
Close events
Stop card
Stop pad
Stop callbacks

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

ResourcesResources

Documentation, FAQs, and Technotes
Technical Reference CD 2.0

\technote\memcard.doc
initialization procedures

\technote\ShiftJIS.doc
memory card save titles and shift-jis

\technote\techchck.doc
pre-submission checklist

\training\winter95\advanced\a_mcard.pdf
misc. memory card

\faq\sio9.pdf
misc. memory card Q&A

\conf\scee\memcard.pdf
\devref\Libref40.pdf
\devref\libovr40.pdf

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Resources(2)Resources(2)

Source Code
Programmers Tools CD 2.0

psx\sample\kanji\asc2sJIS
example of converting ascii to Shift-jiis

\psx\samples\etc\card
Example of how to make a Memory card file w/header. Icons, Title, etc.

\psx\samples\etc\mcrd
various examples of using LibMcrd

\psx\samples\etc\old\cman
\psx\samples\etc\old\card

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97/New High-level Memory Card Library

Resources(3)Resources(3)

Books
Understanding Japanese Information Processing

Ken Lunde

O’reily & Associates

Developer Support
WebSite: www.scea.sony.com
E-Mail: DevTech_Support@interactive.sony.com

Hotline: (415)655-8181
Like the Bat Phone of Support, reserve for urgent issues : -)

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New High-level Memory Card Library

The EndThe End

