
CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

Inline AssemblyInline Assembly

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

OverviewOverview

What is inline assembly
How it is done
What can be gained by it
What can be lost
Sample

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

What is Inline Assembly?What is Inline Assembly?

A method of incorporating assembly
language directly into a C program
Bypasses the compiler

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

How it is DoneHow it is Done

Basic inline assembly
asm (”statements”); where statements
consists of one or more assembly
commands

/* branch to the function f1() */
asm (“b f1”);

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

How it is DoneHow it is Done

Extended inline assembly
asm (“statements”:output registers:input
registers:changed registers);
__asm__ if asm is a keyword
asm volatile () if the statements must
execute where you put them

Optimization may move statements otherwise

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

What is Gained with InlineWhat is Gained with Inline
AssemblyAssembly

Decreased overhead for function calls
More direct control of the program
SPEED!

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

What May be LostWhat May be Lost

Program size may increase
Ease of debugging
Time spent learning assembly
commands
If -O3 optimization is already used,
speed increase may be negligible

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

An Example of InlineAn Example of Inline
AssemblyAssembly

A useful example: memcpy()
What’s wrong with it?
How to fix it
Inlining memcpy()

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

A useful example: A useful example: memcpy()memcpy()

A standard C function
Copies memory byte by byte from one
location to another
Not written with the R3000 in mind

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

What’s wrong with itWhat’s wrong with it

It’s very inefficient
With the R3000, reading a byte takes as
much time as reading a word

Number of reads is 4X what it needs to be

The write buffer holds four words, with
successive writes giving faster access

Writing immediately after a read fails to take
advantage of this

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

How to fix itHow to fix it

Lessen the number of reads
Make a version of memcpy() that reads
words instead of bytes at a time

It should also utilize the speed bonus
gained by with successive writes

Change the RWRWRWRW… to
RRRRWWWW...

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

Inlining Inlining memcpy()memcpy()

Getting started
Look at memcpy() in the disassembly
window of the debugger
Delete unneeded commands
Add a label or two
Copy it into an assembler macro

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

Inlining Inlining memcpy()memcpy()

memcpy >1080000A beq a0,zero,$8001052c
80010504 00001021 move v0,zero
80010508 18C00007 blez a2,$80010528
8001050C 00801821 move v1,a0
80010510 90A20000 lbu v0,0(a1)
80010514 24A50001 addiu a1,a1,$1
80010518 24C6FFFF addiu a2,a2,-$1
8001051C A0820000 sb v0,0(a0)
80010520 1CC0FFFB bgtz a2,$80010510
80010524 24840001 addiu a0,a0,$1
80010528 00601021 move v0,v1
8001052C 03E00008 jr ra

memcpy() disassembled

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

Inlining Inlining memcpy()memcpy()

Unnecessary commands
memcpy >1080000A beq a0,zero,$8001052c
80010504 00001021 move v0,zero
80010508 18C00007 blez a2,$80010528
8001050C 00801821 move v1,a0
80010510 90A20000 lbu v0,0(a1)
80010514 24A50001 addiu a1,a1,$1
80010518 24C6FFFF addiu a2,a2,-$1
8001051C A0820000 sb v0,0(a0)
80010520 1CC0FFFB bgtz a2,$80010510
80010524 24840001 addiu a0,a0,$1
80010528 00601021 move v0,v1
8001052C 03E00008 jr ra

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

Inlining Inlining memcpy()memcpy()

Add a label, remove addresses, change
register names and immediates
byteloop:
lbu $2,0($5)
addiu $5,$5,1
addiu $6,$6,-1
sb $2,0($4)
bgtz $6,byteloop
addiu $4,$4,1

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

Inlining Inlining memcpy()memcpy()

Making a macro, loading arguments
#define inlinemcpy(p1, p2, nbytes){ \

asm ("move $4,%0": :"r"(p1):"$2","$4","$5","$6","memory"); \
asm ("move $5,%0": :"r"(p2):"$2","$4","$5","$6","memory"); \
asm ("move $6,%0": :"r"(bytes):"$2","$4","$5","$6","memory"); \
asm ("byteloop:": : :"$2","$4","$5","$6","memory"); \
asm ("lbu $2,0($5)": : :"$2","$4","$5","$6","memory"); \
asm ("addiu $5,$5,1": : :"$2","$4","$5","$6","memory"); \
asm ("addiu $6,$6,-1": : :"$2","$4","$5","$6","memory"); \
asm ("sb $2,0($4)": : :"$2","$4","$5","$6","memory"); \
asm ("bgtz $6,byteloop": : :"$2","$4","$5","$6","memory"); \
asm ("addiu $4,$4,1": : :"$2","$4","$5","$6","memory"); \

}

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

Inlining Inlining memcpy()memcpy()

Change the byte commands to word
commands
The byte version will still be used for
“leftovers”

Assuming you don’t want limit yourself to
word-length transfers

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

Inlining Inlining memcpy()memcpy()

Word version

argument loading
:
asm ("wordloop:": : :"$2","$4","$5","$6","memory"); \
asm ("lw $2,0($5)": : :"$2","$4","$5","$6","memory"); \
asm ("addiu $5,$5,4": : :"$2","$4","$5","$6","memory"); \
asm ("addiu $6,$6,-4": : :"$2","$4","$5","$6","memory"); \
asm ("sw $2,0($4)": : :"$2","$4","$5","$6","memory"); \
asm ("bgtz $6,wordloop": : :"$2","$4","$5","$6","memory"); \
asm ("addiu $4,$4,4": : :"$2","$4","$5","$6","memory"); \
:
byte version

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

Inlining Inlining memcpy()memcpy()

This version still uses the RWRWRW
sequence
Even faster is four reads followed by
four writes

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / Inline Assembly

Inlining Inlining memcpy()memcpy()

Add three more reads and writes
asm ("wordloop:": : :"$2","$4","$5","$6","memory"); \
asm ("lw $8,0($5)": : :"$2","$4","$5","$6","memory"); \
asm ("lw $9,4($5)": : :"$2","$4","$5","$6","memory"); \
asm ("lw $10,8($5)": : :"$2","$4","$5","$6","memory"); \
asm ("lw $11,12($5)": : :"$2","$4","$5","$6","memory"); \
asm ("addiu $5,$5,16": : :"$2","$4","$5","$6","memory"); \
asm ("addiu $6,$6,-16": : :"$2","$4","$5","$6","memory"); \
asm ("sw $8,0($4)": : :"$2","$4","$5","$6","memory"); \
asm ("sw $9,4($4)": : :"$2","$4","$5","$6","memory"); \
asm ("sw $10,8($4)": : :"$2","$4","$5","$6","memory"); \
asm ("sw $11,12($4)": : :"$2","$4","$5","$6","memory"); \
asm ("bgtz $6,wordloop": : :"$2","$4","$5","$6","memory"); \
asm ("addiu $4,$4,16": : :"$2","$4","$5","$6","memory"); \

