
CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

New LIBDS CD LibraryNew LIBDS CD Library
andand

Runtime Data DecompressionRuntime Data Decompression

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

LIBDS OverviewLIBDS Overview
What is LIBDS?

Differences between LIBDS and LIBCD

Using LIBDS

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

What is LIBDS?What is LIBDS?
A new library for controlling the CD
An API interface that supercedes LIBCD
A library providing enhanced error recovery

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

What is LIBDS?What is LIBDS?
Relationship between LIBDS and LIBCD

LIBDS uses low-level functions from LIBCD
Must use same version of LIBCD and LIBDS together

LIBCD Low-Level Hardware Access Kernel

LIBCD CdControl() System

LIBCD High-Level Functions

LIBDS High-Level Functions

LIBDS Queue System

LIBDS Kernel

PlayStation CD controller hardware

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

What is LIBDS?What is LIBDS?
Relationship with other libraries

Streaming functions use LIBCD
Functions which start streaming CD access use LIBDS

Use DsRead2() instead of CdRead2().
When streaming, only LIBDS need be initialized

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Differences between LIBDS & LIBCDDifferences between LIBDS & LIBCD
LIBCD does not support command queuing

CdControl() from LIBCD always waits for previous
command to complete.
Application must keep track of commands until each
CD command is completed and CD subsystem is
available again.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Differences between LIBDS & LIBCDDifferences between LIBDS & LIBCD
LIBDS Supports Command Queuing

LIBDS features a command queue that allows non-
blocking execution of CD commands

Reduces blocking time when commands are issued
When CD subsystem becomes available, stored commands are
executed in the same order they were issued.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Differences between LIBDS & LIBCDDifferences between LIBDS & LIBCD
The LIBDS Command Packet

Allows you to combine the four commands typically
required to do a read operation.
Deals with retries as specified by your application.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Differences between LIBDS & LIBCDDifferences between LIBDS & LIBCD
Enhanced Error Recovery Features

Retry count may be specified, allows unlimited retries.
Command packets given unique ID for later
identification
Library support provided for error checking

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Differences between LIBDS & LIBCDDifferences between LIBDS & LIBCD
Opening & Closing of the CD cover is
automatically detected

Recovery processing is automated.
Queue processing put on hold until recovery
completed.

Restarts at VBLANK period following recovery

Changes in CD transfer speed are automatically
detected

CD Command execution is automatically blocked for
3/60ths to allow speed change to complete.

Incoming CD commands diverted to queue

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Differences between LIBDS & LIBCDDifferences between LIBDS & LIBCD
Constants

LIBDS.H has all of the same constants defined by
LIBCD.H

1st 3 letters changed from “Cdl” to “Dsl”
For example, CdlPause changed to DslPause

Functions
LIBDS has most of the same commands of LIBCD

1st 2 letters changed from “Cd” to “Ds”.
For example CdSync changed to DsSync

Arguments for some functions may be different
Execution timing for functions may be different

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Using LIBDSUsing LIBDS
Initializing LIBDS

Resetting LIBDS

Exiting LIBDS

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Initializing LIBDSInitializing LIBDS
Use DsInit() function
Call after ResetGraph() , InitPAD(), and
InitCARD()
Cannot mix LIBCD and LIBDS calls

Use LIBDS calls for streaming
DsRead2()
DslReadS

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

 Resetting LIBDS Resetting LIBDS
Use DsFlush() call.

Flushes the CD subsystem
Clears the command queue

Use DsReset() call.
Similar to DsFlush
Also resets callback routines set by your program

These calls do not stop ongoing read/playback
operations

Issue a DslPause command

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Exiting LIBDSExiting LIBDS
Use DsClose() call

Always exit LIBDS prior to using Load() or LoadExec()
for child process or overlay.

Call DsInit() again to restart LIBDS

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Using LIBDSUsing LIBDS
The Command Queue

Issuing Commands
Command Packets
Confirming Command Completion
Checking Queue & System Status

Simplified Data Ready Callback System

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

The Command QueueThe Command Queue
Controls the issuing and completion of CD
primitive commands & automates the processes
required to operate the CD subsystem

Commands are immediately executed if CD subsystem
is available.
Otherwise, commands are placed into queue.

Eliminates blocking time when commands are issued
Queue processing is completely callback driven.
When CD subsystem becomes available, stored commands are
executed in the same order they were issued.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Issuing CommandsIssuing Commands
The DsCommand function is used to place
primitive commands into the command queue.

Multiple processes cannot enter commands in the
queue.
When you start to issue a command, the queue is
closed until the command is successfully issued.

int command_id = DsCommand(u_char command_code,
u_char *parameters,
DslCB *callback_function,
int retry_count);

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Issuing CommandsIssuing Commands
The command_code argument of DsCommand().

Specifies command to be entered into queue.
Most commands cannot be placed in queue immediately after a
read or play command.

OK commands are DslNop, DslGetlocP, DslGetlocL, DslPause,
DslStandby, DslStop

Defined in LIBDS.H, same as CdControl commands:

DslNop
DslSetloc
DslPlay
DslForward
DslBackward
DslReadN

DslStandby
DslStop
DslPause
DslMute
DslDemute
DslSetfilter

DslSetmode
DslGetparam
DslGetlocL
DslGetlocP
DslGetTN
DslGetTD

DslSeekL
DskSeekP
DslReadS

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Issuing CommandsIssuing Commands
The parameters argument of DsCommand().

Most commands do not take parameters
Pass a NULL value

Others take a pointer to a data structure:
DslATV
DslFILE
DslFILTER
DslLOC

Correspond to LIBCD structures

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Issuing CommandsIssuing Commands
The callback_function argument of DsCommand().

LIBDS allows a separate Sync callback function to be
set for each command issued using DsCommand.

A NULL value indicates no specific callback routine,
Otherwise, a pointer to a function of type DslCB.

If a particular callback routine is not specified in the
callback_function argument of DsCommand(), then the
routine specified for DsSyncCallback() is used instead.
For read commands, callbacks for each sector are
issued through the DsReadyCallback() mechanism.

typedef void (*DslCB)(u_char, u_char*);

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Issuing CommandsIssuing Commands
The retry_count argument of DsCommand().

The actual commands issued using DsCommand() are
performed in the background.
If execution of a command fails, it will be retried
automatically by LIBDS according to the retry_count
argument.

If retry_count is -1, then it will do unlimited retries.
If retry_count is 0, t hen it will not do any retries.

Neither the DsSyncCallback or the callback_function
callback routines will be triggered during a retry.

CdSyncCallback will be triggered and is used by LIBDS

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Issuing CommandsIssuing Commands
The command_id value returned by DsCommand()

A command ID code that uniquely identifies the
particular instance of that command.

Completion status of specific commands can be obtained from
DsSync() function.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Command PacketCommand Packet

The command packet allows the multiple
commands required for a read operation to be
combined so that they may be issued together in a
batch.
Special feature of command queue

Packet commands are issued using a CdSync chain
When all commands succeed, or when the error retry
count is exceeded, a callback is triggered.
Reliable retries may be performed when errors occur

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Command PacketCommand Packet

LIBDS creates four commands in the queue to
process the packet request.
1) DslPause
2) DslSetMode
3) DslSetloc
4) The command specified by the command parameter:

DslReadN, DslReadS, DslPlay, DslSeekP, or DslSeekL

The Command Queue must have four empty slots to
successfully register a packet.
Packet ends when all commands have succeeded.
Packet not removed from queue until it has completed.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Command PacketCommand Packet

int packet_id = DsPacket(u_char mode, DslLOC *pos,
u_char command,
DslCB callback_function,
int retry_count);

packet_id = return code.
0 = command was not issued OK
<>0 = unique packet ID code

mode = DslSetmode parameter

pos = pointer to DslLOC timecode specification

command = Command (for example DslPlay)

callback_function = DslCB containing pointer to a callback
function that will be called when this
specific packet has been processed

retry_count = number of desired retries.
 0 = no retry, -1 = unlimited

To enter a packet in the queue, use DsPacket().

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Command PacketCommand Packet

The packet_id value returned by DsPacket()
A packet ID code that uniquely identifies the particular
instance of that entire packet.
Completion status of the packet can be obtained from
DsSync() function.

The mode argument of DsPacket().
Specifies the mode value for a DslSetmode command.

The pos argument of DsPacket().
Specifies the timecode position for the packet
operation.

Read/Play location or Seek destination

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Command PacketCommand Packet

The command argument of DsPacket().
Specifies the desired read/play/seek command

DslReadN, DslReadS
DslPlay
DslSeekP, DslSeekL

The callback_function argument of DsPacket().
Specifies the callback routine to be executed when all
of the commands executed by the packet have been
successfully processed, or if an error occurs.
Basically the same as with DsCommand().

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Command PacketCommand Packet

The retry_count argument of DsPacket().
Specifies the number of times the commands issued by
DsPacket() will be retries if an error occurs.
If execution of any single packet command fails, all of
the commands are retried from the start of the packet
according to the retry_count argument.

If retry_count is -1, then it will do unlimited retries.
If retry_count is 0, t hen it will not do any retries.

If the number of retries is exceeded, the packet triggers
the callback routine specified by the callback_function
argument.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Command PacketCommand Packet

The packet_id value returned by DsPacket()
A packet ID code that uniquely identifies the particular
instance of that entire packet.
Completion status of the packet can be obtained from
DsSync() function.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Confirming Command CompletionConfirming Command Completion
The DsSync() routine can be used to obtain the
results of an individual command or packet.

Execution results are saved in a ring buffer
Oldest results are overwritten by the newest results
Size specified by DslMaxRESULTS macro in LIBDS.H

Macro is for your information only and does actually affect size
of ring buffer

int status = DsSync(int id, u_char* results);

status = Execution status of specified command

id = command ID returned by DsCommand or DsPacket
results = return value(s) from specified command (8 bytes)

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Confirming Command CompletionConfirming Command Completion
The status return value from DsSync()

Indicates the execution status of the specified
command or packet.

DslComplete
Command executed normally

DslDiskError
Command generated an error

DslNoIntr
Command has not completed processing

DslNoResult
If requested results are no longer available in ring buffer.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Confirming Command CompletionConfirming Command Completion
The id argument of DsSync()

A unique ID code that uniquely identifies a particular
command or packet.

The command_id return value from DsCommand().
The packet_id return value from DsPacket().

The results argument of DsSync()
A pointer to an array of 8 bytes which will receive the
information returned from the specified command.

For example, the DslLOC timecode requested by DslGetlocL.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Checking Queue & System StatusChecking Queue & System Status
Checking the current queue status can be done
using the DsQueueLen() function.

Returns the number of items which are currently
waiting in the queue to be processed.

Includes any commands currently executing and not yet
completed.
Maximum queue size specified by DslMaxCOMMANDS
macro defined in LIBDS.H

Queue size is not configurable by application

int queue_length = DsQueueLen(void);

queue_length = Number of items currently in LIBDS queue

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Checking Queue and System StatusChecking Queue and System Status
Checking the current CD subsystem status can be
done using the DsSystemStatus() function.

Returns status code:
DslReady

Ready to execute command
DslBusy

Command being executed or command cannot be executed
DslNoCD

CD is not set (no CD loaded)

int status = DsSystemStatus(void);

status = Current status of CD subsystem

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Simplified Data Ready Callback SystemSimplified Data Ready Callback System

LIBDS features a simplified Data Ready callback
mechanism with automated error handling.

Subheader errors are checked
Library performs retry on errors automatically

int status = DsStartReadySystem(DslRCB func,
int retry_count);

status =Returns 1 if callback installed successfully,
0 if it failed (callback already installed

func = Pointer to the desired callback handler function
retry_count = # of times to retry read when errors occur.

0 = No retries
-1 = unlimited retries

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Simplified Data Ready Callback SystemSimplified Data Ready Callback System

LIBDS does nothing when sector processing
succeeds. Control is passed to specified callback
so that sector data may be transfered using
DsGetSector.

When error occurs, last performed read operation is
retried according to the specified retry_count.

Sectors prior to the one which had the error are read again, but
not passed to callback routine.

For best efficiency, avoid reading huge pieces of data in one
chunk. Instead, break big reads into consecutive smaller reads.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Simplified Data Ready Callback SystemSimplified Data Ready Callback System

To shut down the callback, use the
DsEndReadySystem function.

Removes the currently installed callback
previously setup with DsStartReadySystem.

void DsEndReadySystem(void);

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Runtime Lossless Data DecompressionRuntime Lossless Data Decompression

Separate from LIBCD or LIBDS

Uses Huffman coding for fast table-based runtime
data decompression

Provides roughly 30-50% compression on average

Very fast decompression

Does not use static tables
Tables built at runtime

Requires about 2k temporary space

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Runtime Lossless Data DecompressionRuntime Lossless Data Decompression

Commandline-based tool converts any desired
data files into sector size chunks of Huffman-
encoded data

Tool converts source files into sections which will
compress into sector-size chunks.
As long as each sector is decompressed as it is
received, only 1 sector of temporary buffer space is
needed to store compressed data

Runtime code decompresses data sector by sector
as each one is read from CDROM

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

Runtime Lossless Data DecompressionRuntime Lossless Data Decompression

Advantages
Lossless compression suitable for code or data
Faster loading times
Less disc space required for data
Smaller memory footprint & faster decompression
compared with other compression methods

Disadvantages
Compression not as good as some other methods
Although fast, decompression is completely CPU
dependent.

CONFIDENTIAL PlayStation Developer Seminar / Summer ‘97 / New LIBDS CD Library and Runtime Data Compression

The EndThe End

