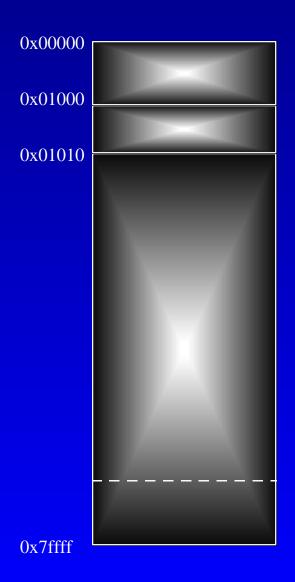
PlayStation Musicians' Festival


Maximizing voice usage

- PlayStation voice allocation
 - First unused voice allocated
 - If all 24 voices busy, the oldest voice with the smallest envelope and the lowest priority (if lower than requested tone) is keyed off and allocated to new request

Maximizing voice usage

- Priority in tone window
 - Set to 127 for most important tones ensures that these will always be keyed on
 - Set to 0 for least important sounds
- What if you have 25 sounds which are priority 127?
 - Not available for MIDI; only for sound effects
 - Inform programmer and ask if SsUtKeyOnV() may be used

SPU RAM map

SPU Decode Data Region

Additional Loop information

Waveform Data Transferrable region

Reverb Work Area

- ▶ 520,175 usable bytes area allocated for reverb
- VAG format overview
- Reduce VAG size
 - 1) AIFF2VAG supports sampling rates as low as 5KHz
 - 2) Stripping VAGs of unneeded components

- VAG format overview
 - VAGs made up of 16 byte blocks
 - 1st block always all zero data to avoid noise
 - Proprietary format data blocks follow
 - Compression ratio about 3.5 to 1 compared to AIFFs
 - One-shot VAGs end with an "SPU IRQ Clear Block"
 - Looping VAGs do not contain this block

- Ask your programmer if they will be using any of the SPU IRQ functions
 - If not, can strip the last block off the VAG
 - Will work on Mac tool for stripping the block
 - Will save 16 bytes per VAG up to 4064 bytes per VAB!

- SPU Streaming
 - Uses small SPU RAM buffer
 - Playback of beginning of VAG started
 - As playback continues, old data overwritten and playback of new data continues

- Spu streaming perfect for things like sports commentators
 - Talk programmer out of using MIDI for speech
 - Excessive memory usage
 - Talk programmer out of using DA for speech
 - Longer seek times than VAG data (since DA files longer)
 - Disk space issues
 - XA also a possibility

- Noise generator
 - Random noise generator takes up no SPU RAM
 - Outputs white noise

3D Sound

- PlayStation plays only mono waveforms
- Need two tones for stereo
- More than likely need 2 VAGs for 3D sound
 - Use sparingly on most important sounds only

Cd audio

- 2 types
 - XA and DA
- Why is it cool?
 - Does not enter main RAM or SPU RAM
 - Does not use a PlayStation voice
 - Can be stereo

Xa Audio

- All channels of XA are stripped off together
- Can change channels during playback
 - Can make XA track adaptive to player performance
 - Can make XA track variable to defeat boredom
 - Must make a few natural gaps with very few instruments sounding
- Slightly reduced seek time over DA audio

DA audio

- Best quality
- Least adaptable
- Longest seek times
- Most disk space usage

Reverb

- Fixed format not programmable
 - 9 types
 - Only one type may be applied at any given time
 - Can set reverb on/off for individual voices\CD input
- Designing with Sound Deli
 - Only tones with *mode* set to "04" will have reverb
 - Can also set on ADSR preview window

Reverb MIDI limitations

- NRPN data 2 ("mode") does not function properly
 - Does change reverb mode of individual tones
 - Also turns reverb on or off for all voices

Reverb MIDI limitations

- Create two sets of tones 1 with reverb, 1 without
 - Bloats VAB header size
- OR place a callback marker which alters the tone's mode
 - Adds CPU cycles
- Even with these workarounds cannot change reverb of currently sounding tone

Shifting VAG loop startpoint

- Unlike other platforms, VAGs can only be set to loop during creation process
- Loop startpoints of looping VAGs can be shifted during playback
- Give your programmer the following info
 - Total samples contained in AIFF
 - Sample number of desired loop startpoint

Shifting VAG loop startpoint

- Programmer info cont.
 - Sample number of original loop startpoint if:
 - The new startpoint is before the original startpoint OR
 - The original startpoint will be used again during playback

Minimizing VAB size

- VAB bodies (VAG data) are transferred to SPU RAM
- VAB headers are kept on main RAM
- How big are VAB headers?
 - Fixed size for master VAB info, program info, and VAG size info, regardless of how many programs, tones, or VAGs are used
 - Variable size for tone info
 - Fixed size (16 tones) for each program used

Minimizing VAB size

- Reduce tone portion of VAB header by reducing programs used
 - Combine sound effects into single programs
 - Must have same pan and volume values at program level
 - Single-tone sound effects can have the same note range as other tones
 - Multi-tone sound effects should have different note ranges for programming ease

Minimizing VAB size

- Reduce tone portion of VAB header cont.
 - Can also combine MIDI instruments
 - Instruments which need to key on at different times must have different note ranges
 - Must have same pan value and same volume value at program level

Pitch calculations

- Center value actually unimportant
- Pitch calculation
 - 60 + keyon_note tone_center
 - Adjusted for the difference in keyon_fine and tone_shift accordingly
- Note range for tones can be expanded

Volume calculations

- Input volume adjusted downward
 - Master VAB volume as % of max
 - Program volume as as % of max
 - Tone volume as as % of max
- Pan reduction to side away from pan effect
 - Program pan
 - Tone pan
 - Input pan

Volume calculations

- Output as two volumes
 - voll and volr
- Exponential reduction
 - lvol = voll*voll/127
 - rvol = volr*volr/127

Master VAB pan

- Used only in Sound Deli
- Substitutes for SEQ volume in order to test sounds without a sequence

Reducing SEQ size

- SEQ data must reside on main memory
- Remove aftertouch
 - PlayStation doesn't deal well with aftertouch anyway

- SsChannelMute()
 - Blocks key on commands only
 - Key off commands, tempo changes, bank changes still processed
 - Allows for much more song variablity
- Map each instrument to a separate channel
 - Allows for main instruments to always play
 - Can mute/unmute detail instruments adaptively

- Change SEQs during playback
 - Create 2 SEQs to switch between
 - Play both simultaneously, one muted, one unmuted
 - Reverse muting at specified times
 - Allows for largest variablity

- 3: "Pack" SEQs
 - What is "packing"
 - Map main instruments of song 1 to MIDI channel 0
 - Map detail instruments of song 1 to MIDI channel 1
 - Map main instruments of song 2 to MIDI channel 2
 - Map detail instruments of song 2 to MIDI channel 3

 - Map detail instruments of song 8 to MIDI channel 15

- "Packing" benefits
 - Easy song switching
 - Allows access to more songs at a cheaper memory price
 - Saves up to 1204 bytes per SEQ
- "Packing" drawbacks
 - Eats up a few extra CPU cycles to process muted tempo changes etc.
 - Reduces individual song variabilty

- Combine "packing" and SEQ switching
 - Create 2 or more SEQs
 - Map as many detail and main instruments as desired
 - Use muting to turn instruments on and off and switch songs

MIDI callback messages

- Use as timers
 - Start other SEQs playing
 - Switch SEQs
 - Mute/Unmute MIDI channels
 - Programmer defined tasks (graphical displays etc.)

Pitch LFO

- Pitch LFO functions apply one waveform as an oscillator on another waveform
- Since no vibrato is currently available, use pitch LFO
- Use a small sine, triangle, or square wave
- Drawbacks
 - Not available for MIDI
 - Uses 2 voices
- Pitch LFO player for Mac

Pitchbend limitations

Must key on sound before pitchbend can take effect