Run-Time Library Reference

CONFIDENTIAL

© 1999 Sony Computer Entertainment Inc.

Publication date: September 1999

Sony Computer Entertainment America
919 E. Hillsdale Blvd., 2nd floor
Foster City, CA 94404

Sony Computer Entertainment Europe
Waverley House

7-12 Noel Street

London W1V 4HH, England

The Run-Time Library Reference manual is supplied pursuant to and subject to the terms of the Sony
Computer Entertainment PlayStation® License and Development Tools Agreements, the Licensed
Publisher Agreement and/or the Licensed Developer Agreement.

The Run-Time Library Reference manual is intended for distribution to and use by only Sony Computer
Entertainment licensed Developers and Publishers in accordance with the PlayStation® License and
Development Tools Agreements, the Licensed Publisher Agreement and/or the Licensed Developer
Agreement.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part,
of this book is expressly prohibited by law and by the terms of the Sony Computer Entertainment
PlayStation® License and Development Tools Agreements, the Licensed Publisher Agreement and/or the
Licensed Developer Agreement.

Ownership of the physical property of the book is retained by and reserved by Sony Computer
Entertainment. Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is
prohibited.

The information in the Run-Time Library Reference manual is subject to change without notice. The content
of this book is Confidential Information of Sony Computer Entertainment.

PlayStation and PlayStation logos are registered trademarks of Sony Computer Entertainment Inc. All other
trademarks are property of their respective owners and/or their licensors.

CONFIDENTIAL

Summary Table of Contents

About This Manual
Changes Since Last Release
Related Documentation
Manual Structure
Developer Reference Series
Typographic Conventions
Developer Support

Chapter 1: Kernel Library
Structures
Functions

Chapter 2: Standard C Library
Functions

Chapter 3: Math Library
Functions

Chapter 4: Memory Card Library
Functions

Chapter 5: Extended Memory Card Library
Functions

Chapter 6: Data Compression Library
Structures
Functions

Chapter 7: Basic Graphics Library
Structures
Functions
Macros

Chapter 8: Basic Geometry Library
Structures
Functions

Chapter 9: Extended Graphics Library
Structures
Functions
Macros
External Variables

Chapter 10: CD/Streaming Library
Structures
Functions

Chapter 11: Extended CD-ROM Library
Structures
Functions

Chapter 12: Controller/Peripherals Library
Functions

Chapter 13: Link Cable Library
Functions
Macros

CONFIDENTIAL

Vi
Vi
Vi
viii
viii

2-3

3-3

4-3

5-3

6-3
6-5

7-5
7-33
7-118

8-5
8-21

9-3
9-31
9-109
9-112

10-3
10-8

12-3

13-3
13-8

Run-Time Library Reference

iv Table of Contents

Chapter 14: Extended Sound Library

Structures 14-5

Functions 14-14
Chapter 15: Basic Sound Library

Structures 15-5

Functions 15-15
Chapter 16: Serial Input/Output Library

Functions 16-3
Chapter 17: HMD Library

Structures 17-3

Functions 17-23
Chapter 18: PDA Library (libmcx)

Functions 18-3
Chapter 19: Memory Card GUI Module (mcgui)

Structures 19-3

Functions 19-10

Index

Run-Time Library Reference CONFIDENTIAL

About This Manual

This manual is the latest release of the PlayStation® Library Reference as of Run-Time Library release 4.6.
The purpose of this manual is to define all available PlayStation run-time library functions, macros and
structures. The companion Run-Time Library Overview volume describes the structure and purpose of the

libraries in programming software for the PlayStation.

Changes Since Last Release

This manual has been expanded in content since release 4.5 of the Run-time Library. It combines all

previously released material with the latest Run-time Library 4.6 information.

Kernel Library (Chapter 1)
Functions revised:

FlushCache()
StartPAD()

Data Compression Library (Chapter 6)
Function added:

EncSPU2()
Function Revised:
ENCSPUENV()

BasicGraphics Library (Chapter 7)
Functions added:

GetDrawEnv2()
Functions revised:

Clearlmage()
Clearlmage2()
SetDrawMode()

Extended Graphics Library (Chapter 9)
Functions revised:

GsCOORDINATE2()
GsGetlLs()
GsGetLw()

Extended CD-ROM Library (Chapter 11)
Functions revised:

DsLastCom()

HMD Library (Chapter 17)
Functions revised

GsCOORDUNIT()
GsGetLwUnit()
GsGetLsUnit()

CONFIDENTIAL

Run-Time Library Reference

vi About This Manual

Related Documentation

This manual should be read in conjunction with the Run-Time Library Overview, since the Overview
summarizes the use of the libraries.

Note: the Developer Support Web site posts current developments regarding the run-time libraries and
also provides notice of future documentation releases and upgrades.

Manual Structure
The Library Reference contains nineteen chapters providing definitions of library structures and functions.

Generally, each chapter defines the structures and/or functions of a single library. Note, however, that
some chapters provide definitions for several related libraries. In particular, note that Chapter 2, the
Standard C Library, describes libc and libc2. Chapter 12, the Controller/Peripherals Library, describes
libetc, libgun, libpad and libtap.

Developer Reference Series

This manual is part of the Developer Reference Series, a series of technical reference volumes covering all
aspects of PlayStation development. The complete series is listed below:

Manual Description

PlayStation Hardware Describes the PlayStation hardware
architecture and overviews its
subsystems.

PlayStation Operating System Describes the PlayStation operating
system and related programming
fundamentals.

Run-Time Library Overview Describes the structure and purpose of

the run-time libraries provided for
PlayStation software development.

Run-Time Library Reference Defines all available PlayStation run-time
library functions, macros and structures.
Inline Programming Reference Describes in-line programming using

DMPSX, GTE inline macro and GTE
register information.

SDevTC Development Environment Describes the SDevTC (formerly "Psy-Q")
Development Environment for PlayStation
software development.

3D Graphics Tools Describes how to use the PlayStation 3D
Graphics Tools, including the animation
and material editors.

Sprite Editor Describes the Sprite Editor tool for
creating sprite data and background
picture components.

Sound Artist Tool Provides installation and operation
instructions for the DTL-H800 Sound Artist
Board and explains how to use the Sound
Artist Tool software.

File Formats Describes all native PlayStation data
formats.
Data Conversion Utilities Describes all available PlayStation data

conversion utilities, including both stand-
alone and plug-in programs.

Run-Time Library Reference CONFIDENTIAL

About This Manual vii

Manual Description

CD Emulator Provides installation and operation
instructions for the CD Emulator
subsystem and related software.

CD-ROM Generator Describes how to use the CD-ROM
Generator software to write CD-R discs.
Performance Analyzer User Guide Provides general instructions for using the
Performance Analyzer software.
Performance Analyzer Technical Describes how to measure software
Reference performance and interpret the results
using the Performance Analyser.
DTL-H2000 Installation and Operation Provides installation and operation

instructions for the DTL-H2000
Development System.

DTL-H2500/2700 Installation and Provides installation and operation
Operation instructions for the DTL-H2500/H2700
Development Systems.

Typographic Conventions

Certain Typographic Conventions are used through out this manual to clarify the meaning of the text. The
following conventions apply:

Convention Meaning

Italic Function arguments and structure
members.

Couri er Literal program code.

Medium Bold Types and structure/function names (in
structure/function definitions only)

Blue Hyperlink to function or structure
description

Developer Support

Sony Computer Entertainment America (SCEA)

SCEA developer support is available to licensees in North America only. You may obtain developer support
or additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In North America: In North America:

Attn: Developer Tools Coordinator E-mail;
DevTech_Support@playstation.sony.com

Sony Computer Entertainment America Web: http://www.scea.sony.com/dev

919 East Hillsdale Blvd., 2nd floor Developer Support Hotline:

Foster City, CA 94404 (650) 655-8181

Tel: (650) 655-8000 (Call Monday through Friday, 8 a.m. to 5
p.m., PST/PDT)

Sony Computer Entertainment Europe (SCEE)

SCEE developer support is available to licensees in Europe only. You may obtain developer support or
additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In Europe: In Europe:

Attn: Production Coordinator E-mail: dev_support@playstation.co.uk
Sony Computer Entertainment Europe Web: https://www-s.playstation.co.uk

CONFIDENTIAL Run-Time Library Reference

mailto:DevTech_Support@playstation.sony.com
http://www.scea.sony.com/dev
mailto:dev_support@playstation.co.uk
https://www-s.playstation.co.uk

viii About This Manual

Order Information Developer Support

Waverley House Developer Support Hotline:

7-12 Noel Street +44 (0) 171 447 1680

London W1V 4HH (Call Monday through Friday, 9 a.m. to 6
Tel: +44 (0) 171 447 1600 p.m., GMT or BST/BDT)

Run-Time Library Reference CONFIDENTIAL

Chapter 1: Kernel Library
Table of Contents

Structures
DIRENTRY 1-3
EvCB 1-4
EXEC 1-5
TCB 1-6
TCBH 1-7
ToT 1-8
Functions
calloc2 1-9
calloc3 1-10
cd 1-11
ChangeClearPAD 1-12
ChangeTh 1-13
close 1-14
CloseEvent 1-15
CloseTh 1-16
DeliverEvent 1-17
DisableEvent 1-18
DisablePAD 1-19
EnableEvent 1-20
EnablePAD 1-21
EnterCriticalSection 1-22
erase 1-23
Exception 1-24
Exec 1-25
ExitCriticalSection 1-26
firstfile 1-27
FlushCache 1-28
format 1-29
free2 1-30
free3 1-31
GetConf 1-32
GetCr 1-33
GetGp 1-34
GetRCnt 1-35
GetSp 1-36
GetSr 1-37
GetSysSp 1-38
InitHeap 1-39
InitHeap?2 1-40
InitHeap3 1-41
InitPAD 1-42
joctl 1-43
Krom2RawAdd 1-44
Krom2RawAdd2 1-45
Load 1-46
LoadExec 1-47
LoadTest 1-48

CONFIDENTIAL Run-Time Library Reference

Iseek

malloc2
malloc3
nextfile

open
OpenEvent
OpenTh

read

realloc2
realloc3
rename
ResetRCnt
ReturnFromException
SetConf
SetMem
SetRCnt

SetSp
StartPAD
StartRCnt
StopPAD
StopRCnt
SwEnterCriticalSection
SwExitCriticalSection
SystemError
TestEvent
undelete
UnDeliverEvent
WaitEvent
write

_96_init
_96_remove
_boot
_Qget_ermo
_Qget_error

Run-Time Library Reference

CONFIDENTIAL

©

o

N =

M~ ®

(&)}

(&)

J

© o

— O

wW N

e

(&)

o ~

o ©

—

GGG GG GG GG G G G G G G G G G QT O G G G G UGS
mCOCO\l\l\l\l\l\l\l\lNN@@@@Q@@@@@@@@@@@@@@@#

N

w

~

(&)}

~N O

©

o

—

N

Kernel Library Structures 1-3

Structures
DIRENTRY
Directory entries.
Library Header File Introduced Documentation Date
libapi.lib kernel.h 2.X 12/14/98
Structure
struct DIRENTRY {
char namef[20]; Filename
long attr; Attributes (dependent on file system)
long size; File size (in bytes)
struct DIRENTRY “next; Pointer to next file entry (for user)
char system[8]; Reserved by system
b
Explanation

Stores information relating to files registered in the file system.

See also
firstfile(), nextfile()

CONFIDENTIAL Run-Time Library Reference

1-4 Kernel Library Structures

EvCB

Event Control Block

Library Header File Introduced Documentation Date
libapi.lib kernel.h 2.x 12/14/98
Structure
struct EVCB {
u_long desc; Cause descriptor
long status; Status
long spec; Event type
long mode; Mode
(long *FHandler)(); Pointer to a function type handler
long system/2]; Reserved by system
b
Explanation

Stores information for each event.

See also
OpenEvent(), GetConf(), SetConf().

Run-Time Library Reference

CONFIDENTIAL

EXEC

Execution file data structure.

Kernel Library Structures 1-5

Library Header File Introduced Documentation Date
libapi.lib kernel.h 2.x 12/14/98
Structure

struct EXEC {

7

unsigned long pcO;
unsigned long gp0;
unsigned long t_addr;
unsigned long t_size;
unsigned long d_adar;
unsigned long d_size;
unsigned long b_addr;
unsigned long b_size;
unsigned long s_adadr;
unsigned long s_size;
unsigned long sp;
unsigned long fo;
unsigned long gp;,
unsigned long ret;
unsigned long base;

Explanation

Stores information for loading and executing a program. The data is stored in the first 2K bytes of the
execution file (PS-X EXE format). By adding stack information and transfering it to Exec(), the program is
activated.

See also

Exec()

Execution start address
gp register initial value

Starting address of initialized text section

Size of text section

Starting address of initialized data section

Size of initialized data section

Uninitialized data section start address

Uninitialized data section size

Stack start address (specified by the user)

Stack size (specified by the user)
Register shunt variable
Register shunt variable
Register shunt variable
Register shunt variable
Register shunt variable

CONFIDENTIAL

Run-Time Library Reference

1-6 Kernel Library Structures

TCB
Task Control Block.

Library Header File

Introduced Documentation Date

libapi.lib kernel.h

2.X 12/14/98

Structure

struct TCB {
long status;
long mode;
unsigned long reg/NREGS];

long system[6];
b

Explanation

Status

Mode

Register saving area (specified by register designation
macro)

Reserved by system

Stores a context (including contents of the registers) for thread management.

See also

OpenTh(), ChangeTh(), GetConf(), SetConf()

Run-Time Library Reference

CONFIDENTIAL

TCBH
Task Control Block Header.

Kernel Library Structures 1-7

Library Header File Introduced Documentation Date
libapi.lib kernel.h 2.X 12/14/98
Structure
struct TCBH {
struct TCB “entry; Pointer to execution TCB
long flag; System reserved
Explanation

Used for thread management. entry is a pointer to the currently executing TCB.

See also
OpenTh(), ChangeTh()

CONFIDENTIAL

Run-Time Library Reference

1-8 Kernel Library Structures

ToT

System Table Information.

Library Header File Introduced Documentation Date

libapi.lib kernel.h 2.X 12/14/98

Structure
struct ToT {
unsigned long *head; Pointer to a system table start address
long size; System table size (in bytes)
b
Explanation
Information about various system tables used by the kernel. The tables begin at address 0x00000100.

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-9

Functions

calloc2
Allocate a block in main memory.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 3.6 12/14/98

Syntax

void *calloc2(
size_tn, Number of partitions
size_t s) Size of one partition

Explanation
Allocates a block of n*s bytes in the heap memory and initializes it to 0. Corresponds to InitHeap?2().

Return value
Pointer to the allocated memory block. If allocation fails, NULL is returned.

See also
InitHeap?2(), malloc2(), realloc?2(), free2)

CONFIDENTIAL Run-Time Library Reference

1-10 Kernel Library Functions

calloc3
Allocate a block in main memory.

Library Header File Introduced Documentation Date

libapi.lib malloc.h 4.0 12/14/98

Syntax

void *calloc3 (
size_tn, Number of partitions
size_t s) Size of one partition

Explanation
Allocates a block of n*s bytes in the heap memory and initializes it to 0. Corresponds to InitHeap3().

Return value
A pointer to the allocated memory block. If allocation fails, NULL is returned.

See also
InitHeap3(), malloc3(), realloc3(), free3))

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-11

cd
Change default directory.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long cd(
char *path) Pointer to the default directory path

Explanation

Changes the default directory path for a given file system (specified by the device name at the beginning of
path).

Return value
1 if it succeeds, and O otherwise.

CONFIDENTIAL Run-Time Library Reference

1-12 Kernel Library Functions

ChangeClearPAD

Set the control driver.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

void ChangeClearPAD(

long val) Vertical retrace line interruption clear flag
Explanation

if val is 1, interrupt processing in a control driver started by a vertical retrace line interrupt is completed. If
val is 0, processing is passed to a lower priority interrupt module without completion.

See also
StartPAD(), StopPAD(), StartCARD() (see libcard), StopCARD() (see libcard)

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-13

ChangeTh

Change the thread to be executed.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long ChangeTh(

unsigned long thread) Thread descriptor

Explanation

Transfers execution to the thread specified by thread. The current thread is saved in a TCB. This function
returns when the original thread is restored.

Before executing ChangeTh(), initialize TCB reg [R-SR] to the following:

e The interrupt context is 0X404
e The main flow is 0X401

Return value
On success and re-execution, the function returns 1. On failure, it returns 0. The return value on re-

execution can be changed by any other thread.

See also
OpenTh()

CONFIDENTIAL Run-Time Library Reference

1-14 Kernel Library Functions

close
Close a file.

Library Header File Introduced Documentation Date

libapi.lib libapi.h 2.X 12/14/98

Syntax

int close(
int fd) File descriptor

Explanation
Closes the file specified by fd.

Return value
fd, if the function succeeds, -1 otherwise.

See also
Open()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-15

CloseEvent
Close an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long CloseEvent(
unsigned long event) Event descriptor

Explanation
Releases the EvCB specified by event. Must be executed in a critical section.

Return value
1 on success, 0 on failure.

See also
OpenEvent(), EnterCriticalSection(), SwEnterCriticalSection()

CONFIDENTIAL Run-Time Library Reference

1-16 Kernel Library Functions

CloseTh

Close a thread.

Library Header File Introduced Documentation Date

libapi.lib libapi.h 2.X 12/14/98

Syntax

long closeTh(
unsigned long thread) Thread descriptor

Explanation
Closes a thread and releases its TCB. Must be executed in a critical section.

Return value
1 on success, 0 on failure.

See also
OpenTh(), EnterCriticalSection(), SwEnterCriticalSection()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-17

DeliverEvent
Generate an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

void DeliverEvent(
unsigned long ev7, Cause descriptor
long ev2) Event class

Explanation

Delivers an event if the event’s current status is EVStACTIVE (event not yet generated, generation possible).
If the event mode is EVMAINTR, the event handler function is called. If the event mode is EvMANOINTR, the
event status is changed to EVStALREADY (event already occurred, generation prohibited). This function
must be executed in a critical section.

See also

UnDeliverEvent(), OpenEvent(), TestEvent(), EnterCriticalSection(), SwEnterCriticalSection(), DisableEvent(),
EnableEvent(), WaitEvent(), CloseEvent()

CONFIDENTIAL Run-Time Library Reference

1-18 Kernel Library Functions

DisableEvent
Disable an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long DisableEvent(
unsigned long event) Event descriptor

Explanation

Inhibits occurrence of an event specified by the descriptor event. It changes the event status to EVStIWAIT
(event generation prohibited).

Return value
1 on success, 0 on failure.

See also
EnableEvent()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-19

DisablePAD

Disable communication with the controller.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

void DisablePad(void)

Explanation
Temporarily disables communication with the controller.

Unlike StopPAD(), which deletes the controller handler activated by Vsync interrupts, this function simply
skips controller communication by setting a flag in the handler.

Since a controller normally communicates via Vsync interrupts, this function can be used in situations when
the controller status is needed less frequently than every 1/60 sec.

See also
EnablePAD(), StopPAD()

CONFIDENTIAL Run-Time Library Reference

1-20 Kernel Library Functions

EnableEvent
Enable occurrence of an event.

Library Header File Introduced Documentation Date

libapi.lib libapi.h 2.X 12/14/98

Syntax

long EnableEvent(
unsigned long event) Event descriptor

Explanation

Enables occurrence of an event specified by the descriptor event. It changes the event status to
EvStACTIVE (event not yet generated, generation possible).

Return value
1 on success, 0 on failure.

See also
DisableEvent(), TestEvent()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-21

EnablePAD

Enable communication with the controller.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

void EnablePAD(void)

Explanation

Enables communication with a controller which was disabled with DisablePAD(). Although a normal
controller communicates via Vsync interrupts, this function is used only with timing longer than 1/60 sec.
when the controller status is not needed.

See also
DisablePAD()

CONFIDENTIAL Run-Time Library Reference

1-22 Kernel Library Functions

EnterCriticalSection
Disable interrupts.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98
Syntax

void EnterCriticalSection(void)

Explanation
Disables interrupts (enters a critical section).

Executes an internal system call and destroys the interrupt context. However, does not call the main
function from the event handler callback interrupt context.

Return value
0 when this function is called in a critical section, 1 otherwise.

See also
ExitCriticalSection()

Run-Time Library Reference CONFIDENTIAL

erase
Delete a file.

Kernel Library Functions 1-23

Library Header File Introduced

Documentation Date

libapi.lib libapi.h 2.X

12/14/98

Syntax

long erase(
char *name) Pointer to a filename

Explanation
Deletes the file specified by name.

This function was formerly called “delete.”

Return value
1 on success, 0 on failure.

See also
undelete()

CONFIDENTIAL

Run-Time Library Reference

1-24 Kernel Library Functions

Exception

Cause an interrupt.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

void Exception(void)

Explanation

Causes an interrupt, and stores the current context in the execution TCB. It is also valid in a critical section.
Executes an internal call and destroys the exception context.

See also
ChangeTh(), ReturnFromException()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-25

Exec

Execute an execution file.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long Exec(

struct EXEC “exec, Pointer to execution file information

long argc, Number of arguments

char “argv) Pointer to argument

Explanation

Executes a module that has already been loaded into memory, using the execution file information specified
by exec. If exec->s_addr is 0, neither the stack nor frame pointers are set.

The function does the following:

» Clears a data section without initial values to zero.

» Saves sp, fp, and gp, and then initializes them. (fp is set to the same value as sp.)
» Sets the arguments of main() in the a0 and a1 registers.

» Calls the execution start address.

* Restores sp, fp, and gp after a return is made.

It must be executed in a critical section.
This function needs the ISO 9660 file system to run properly. Call _96_init() to initialize the system and
_96_remove() to exit the system.

Return value
1 on success; 0 on failure.

See also
Load(), _96_init(), _96_remove()

CONFIDENTIAL Run-Time Library Reference

1-26 Kernel Library Functions

ExitCriticalSection
Enable interrupts.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98
Syntax

void ExitCriticalSection(void)

Explanation
Enables interrupts (exits from a critical section).

Executes an internal system call and destroys the interrupt context. However, it does not call the main
function from the event handler callback interrupt context.

See also
EnterCriticalSection()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions

firstfile

Find the first file matching a filename.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

struct DIRENTRY *firstfile(

char “name, Pointer to a filename

struct DIRENTRY *dir) Pointer to the buffer holding information relating to the

referenced file.

Explanation

Finds the first file corresponding to the filename pattern name, and stores data relating to this file in the
directory dir. The wildcard characters “?” (standing for any one character) and “*” (standing for a character
string of any length) can be used in the filename pattern. Characters specified after “*” are ignored.

Return value
Returns dir if it succeeds, and O otherwise.

See also
nextfile()

CONFIDENTIAL Run-Time Library Reference

1-27

1-28 Kernel Library Functions

FlushCache

Flush instruction cache.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 9/1/99

Syntax

void FlushCache(void)

Explanation

Flushes the instruction cache (I-cache). Must be executed in a critical section.

Because this function can hang if it is called during DMA transfer, it must be called after confirming that
DMA transfer is complete.

See also
EnterCriticalSection()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-29

format
Initialize file system.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long format(
char *fs) Pointer to file system name

Explanation
Initializes file system fs. This function is only effective on writeable file systems.

When initializing the Memory Card, it’s preferable to use the libcard function _card_format().

Return value
Always returns 1.

See also
_card_format() (see libcard)

CONFIDENTIAL Run-Time Library Reference

1-30 Kernel Library Functions

free2
Free allocated memory blocks.

Library Header File Introduced Documentation Date

libapi.lib malloc.h 3.6 12/14/98

Syntax

void free2
(void *block) Area to be released

Explanation

Releases a memory block that was allocated by calloc2(), malloc2(), or realloc2(). Corresponds to
InitHeap?2().

See also
InitHeap?2(), calloc2(), malloc2(), realloc2()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-31

free3
Free allocated memory blocks.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 4.0 12/14/98

Syntax

void free3
(void *block) Area to be released

Explanation
Releases a memory block that was allocated by calloc3(), malloc3(), or realloc3().

See also
InitHeap3(), calloc3(), malloc3(), realloc3()

CONFIDENTIAL Run-Time Library Reference

1-32 Kernel Library Functions

GetConf

Get the kernel configuration.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax

void GetConf(

unsigned long ey, Pointer to number of event management blocks

unsigned long *tcb, Pointer to number of task management blocks

unsigned long *sp) Ignored

Explanation

Stores a system configuration parameter set by SetConf() to the address given by the pointer as the
argument. It returns an undefined value before the execution of SetConf() because this function refers to its
internal parameter.

See also
SetConf()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions

GetCr

Get cause register value.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax

unsigned long GetCr(void)

Explanation
Gets the value of the cause register (a coprocessor control register).

Table 1-1: Description of Cause-Register Bits for GetCr

Bit Description
31-6 Reserved by the system
5-2 Exception code

0000 External interrupt
0001 Not used
0010 Not used
0011 Not used
0100 Address read error
0101 Address write error
0110 Command bus error
0111 Data bus error
1000 System call
1001 Break point
1010 Undefined command
1011 Co-processor not mounted
1100 Overflow

1-0 Reserved by the system

Return value
The current cause register value.

See also
OpenTh()

CONFIDENTIAL Run-Time Library Reference

1-33

1-34 Kernel Library Functions

GetGp

Get value of gp register.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax

unsigned long GetGp(void)

Explanation
Gets the value of the gp register.

Return value
The current gp register value.

See also
OpenTh(), Load(), Exec()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-35

GetRCnt

Get value of a root counter.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long GetRCnt(
long spec) Root counter

Explanation

Returns the current value of root counter spec. To be used when root counter spec has been set by
SetRCnt to a polling mode (RCntMdNOINTR).

Return value
The 32-bit unsigned expanded counter value. On failure, it returns -1.

See also
SetRCnt(), StartRCnt(), StopRCnt(), ResetRCnt()

CONFIDENTIAL Run-Time Library Reference

1-36 Kernel Library Functions

GetSp

Get value of stack pointer.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax

unsigned long GetSp(void)

Explanation
Gets value of sp register.

Return value
The current sp register value.

See also
OpenTh(), Load(), Exec(), SetSp()

Run-Time Library Reference CONFIDENTIAL

GetSr

Get value of status register.

Kernel Library Functions 1-37

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98
Syntax
unsigned long GetSr(void)
Explanation
Gets the value of the status register.
Table 1-2: Description of Status-Register Bits for GetSr
Bit Description
31-28 Co-processor installation flag (1: Installed);
Bit 29 is GTE.
27-11 Reserved by the system
10 Always 1
9-3 Reserved by the system
2 Main flow interrupt permission (1:
Permission)
1 Reserved by the system
0 Interrupt permission (1: Permission)

Return value
The current status register value.

See also
OpenTh()

CONFIDENTIAL

Run-Time Library Reference

1-38 Kernel Library Functions

GetSysSp

Get address of system stack.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax

long GetSysSp(void)

Explanation
Gets the highest address of a system stack area for event handler function execution.

The size of the stack area is 2 K-bytes.

Return value
Highest address of the system stack area

See also
GetSp()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions

InitHeap
Initialize heap area.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.0 12/14/98

Syntax

void InitHeap(

unsigned long *head, Pointer to heap start address

unsigned long size) Heap size (a multiple of 4, in bytes)

Explanation

Initializes a group of standard function library memory control functions. After using this function, malloc(),
free(), etc. are usable.

There is some overhead, so the entire size in bytes cannot be used.

Must be executed in a critical section. If several executions of this function overlap, the previous memory
control information is lost.

See also
malloc() (see libc/libc2)

CONFIDENTIAL Run-Time Library Reference

1-39

1-40 Kernel Library Functions

InitHeap2

Initialize heap area.

Library Header File Introduced Documentation Date

libapi.lib malloc.h 3.6 12/14/98

Syntax

void InitHeap(

void *head, Pointer to heap start address

long size) Heap size (a multiple of 4, in bytes)

Explanation

Initializes a heap area of size bytes. (Since there is overhead, the entire size in bytes cannot be used.)
After calling this function, the library memory routines in the “malloc3” group (malloc3)), free3(), etc.) are
usable. This routine fixes a bug in InitHeap() but has larger program size since this is a memory resident

function. See "Memory Allocation Functions" in the Kernel chapter of the Library Overview for more
information on the malloc systems.

If several executions of this function overlap, the previous memory control information is lost.

See also
InitHeap(), malloc2(), realloc2(), calloc2(), free2()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-41

InitHeap3

Initialize heap area.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 4.0 12/14/98

Syntax

void InitHeap3(

void *head, Pointer to heap start address

long size) Heap size (a multiple of 8, in bytes)

Explanation

Initializes a heap area of size bytes. If size is not divisible by 8, the remainder after dividing by 8 is
discarded and isn’t allocated. (Since there is overhead, the entire size in bytes cannot be used.)

After calling this function, the library memory routines in the “malloc3” group (malloc3)), free3(), etc.) are
usable. This function is a higher speed than the “malloc2” system and is smaller in size. See "Memory
Allocation Functions" in the Kernel chapter of the Library Overview for more information on the malloc
systems.

If several executions of this function overlap, the previous memory control information is lost.

See also
InitHeap(), InitHeap?2(), malloc3(), realloc3(), calloc3(), free3()

CONFIDENTIAL Run-Time Library Reference

1-42 Kernel Library Functions

InitPAD

Initialize the controller.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long InitPAD(
char *bufA, char “bufB, Pointers to incoming data buffers
long /enA, long lenB) Length of incoming data buffers (in bytes)

Explanation

Registers a receive data buffer for the controller. For the format of this buffer, see “Receive Buffer Data
Format” of Chapter 13 (Controller/Peripherals Library) of the Library Overview.

Since it is possible for mistakes to occur when an unexpected controller is connected to the receive data
length, always allocate 34 bytes.

When using the Multi Tap, use InitTAP(). When using the gun controller, use INitGUN().

Return value
Always 1.

See also
StartPAD(), StopPAD(), ChangeClearPAD(), InitTAP() (see libetc), INnitGUN() (see libetc).

Run-Time Library Reference CONFIDENTIAL

ioctl
Control devices.

Kernel Library Functions 1-43

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long ioctl(

int fd, File descriptor

int com, Control command

int arg) Control command argument

Explanation

Executes control commands on the device. Details of the commands and their arguments are given

separately for each device.

Return value

1 if it succeeds and O otherwise.

See also
open()

CONFIDENTIAL

Run-Time Library Reference

1-44 Kernel Library Functions

Krom2RawAdd

Get Kaniji font pattern addresses.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax

unsigned long Krom2RawAdd(

unsigned short sjiscode) Shift-JIS code

Explanation

Gets the starting address in the kernel of the font pattern for the Kanji character specified by sjiscode.

Refer to the codeview sample in \psx\kanji\sjiscode for a list of usable fonts and the actual fonts
themselves.

Return value
The starting address of a Kaniji font pattern. If there is no font data corresponding to the specified Kaniji
character, a value of -1 is returned.

Bug alert: The normal arguments are Shift-JIS code values between 0x8140~0x84BE or
0x889F~0x9872. If a Shift-JIS code within that region corresponds to a blank area in the code table, a font
pattern unrelated to that code is returned as the starting address. This problem has been corrected in
Krom2RawAdd2, so we recommend using Krom2RawAdd2 to obtain the font pattern starting address.

See also
Krom2RawAdd2()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-45

Krom2RawAdd2

Get shift-JIS font pattern addresses.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.2 12/14/98

Syntax

unsigned long Krom2RawAdd2(

unsigned short sjiscode) Shift-JIS code

Explanation

Gets the starting address in the font pattern kernel for the non-Kanji/Kaniji level 1 character specified by the
sjiscode.

(Refer to the codeview sample in \psx\kanji\sjiscode for a list of usable fonts and the actual fonts
themselves.)

Return value
The font pattern starting address. When there is no font data corresponding to the specified shift-JIS code,

an address containing a full space font pattern is returned.

See also
Krom2RawAdd()

CONFIDENTIAL Run-Time Library Reference

1-46 Kernel Library Functions

Load

Load an execution file.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long Load(
char *name, Pointer to filename
struct EXEC *exec) Pointer to execution file information

Explanation

Reads the PlayStation EXE format file name to the address specified by its internal header, and writes
internal information to exec.

This function needs the ISO 9660 file system to run properly. To initialize this system, call _96_init(); to exit
the system, call _96_remove().

Calls FlushCache() internally.

Return value
1 if it succeeds, and O otherwise.

See also
Exec(), FlushCache(), _96_init(), _96_remove()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-47

LoadExec

Load and execute an execution file.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2. 12/14/98

Syntax

void LoadExec(

char *name, Pointer to a PS-X EXE format execution file name (fewer than 19

characters)

unsigned long s_addr, Stack area starting address

unsigned long s_size) Number of bytes in stack area

Explanation

Calls Load() and Exec(), then reads a file name into memory and executes the file. s_addr and s_size are
passed to Exec() and set by the structure EXEC.

This function needs the ISO 9660 file system to run properly. To initialize this system, call _96_init(); to exit
the system, call _96_remove().

See also
Load(), Exec(), _96_init(), _96_remove()

CONFIDENTIAL Run-Time Library Reference

1-48 Kernel Library Functions

LoadTest

Load test.

Library Header File Introduced Documentation Date

libapi.lib libapi.h 2.X 12/14/98

Syntax

long LoadTest(
char “name, Pointer to filename
struct EXEC *exec) Pointer to data in an execution file

Explanation
Writes internal information from a PS-X EXE format file name to exec.

Return value
The execution starting address. On failure, it returns 0.

See also
Load()

Run-Time Library Reference CONFIDENTIAL

Iseek
Move a file pointer.

Kernel Library Functions 1-49

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98
Syntax

unsigned long Iseek(
int 7d,

unsigned int offset,
int flag)

Explanation

File descriptor
Number of bytes to move pointer
Start point flag

Moves a file pointer of the device indicated by the descriptor fd.
If flag is SEEK_SET, movement starts at the start of the file; if flag is SEEK_CUR, movement starts with the

current position.

This function does not apply to a PC communication link.

Return value

The current file pointer, if it succeeds. On failure, it returns -1.

See also
open(), read(), write()

CONFIDENTIAL

Run-Time Library Reference

1-50 Kernel Library Functions

malloc2
Allocate main memory.

Library Header File Introduced Documentation Date

libapi.lib malloc.h 3.6 12/14/98

Syntax

void *malloc?2 (
size_t s) Size of memory block to be allocated

Explanation
Allocates s bytes of memory block from the heap memory. InitHeap2() must be executed in advance.
Heap memory is defined as below:

Low Address Module Highest Address + 4
High Address On-board memory - 64KB

Return value
A pointer to the allocated memory block. On failure, NULL is returned.

See also
InitHeap?2(), calloc2(), realloc2(), free2()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-51

malloc3
Allocate main memory.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 4.0 12/14/98

Syntax

void *malloc3 (
size_t s) Size of memory block to be allocated

Explanation
Allocates s bytes of memory block from the heap memory. InitHeap3() must be executed in advance.

Refer to the section entitled "Memory Allocation Functions” in the Kernel chapter of the Library Overview for
the differences between the various malloc systems.

Return value
A pointer to the allocated memory block. If allocation fails, NULL is returned.

See also
InitHeap3(), calloc3(), realloc3(), free3()

CONFIDENTIAL Run-Time Library Reference

1-52 Kernel Library Functions

nextfile
Find the next file matching a filename.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

struct DIRENTRY *nextfile(

struct DIRENTRY *dir) Pointer to buffer holding file information

Explanation

Continues a file lookup under the same conditions as the previous call to firstfile(). If it finds a corresponding
file, it stores file information in dir.

If the shell cover of the CD-ROM drive has been opened since the execution of the previous firstfile() call,
this function fails, and reports that the file has not been found.

Return value
dir if it succeeds, and 0 otherwise.

See also
firstfile()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions

open
Open afile.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax

long open(

char *devname, Pointer to a filename
int flag) Open mode
Explanation

Opens a device for low-level input/output, and returns the descriptor. The values of flag are dependent on
the device; they can be the following:

Table 1-3: Open Modes

Macro Open mode
O_RDONLY Read only
O_WRONLY Write only

O_RDWR Both read and write
O_CREAT Create new file
O_NOBUF Non-buffer mode
O_NOWAIT Asynchronous mode

Return value
The file descriptor, if the function succeeds. On failure, it returns -1.

See also
close()

CONFIDENTIAL Run-Time Library Reference

1-63

1-54 Kernel Library Functions

OpenEvent
Open an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long OpenEvent(

unsigned long desc, Cause descriptor

long spec, Event type

long mode, Mode

long *func()) Pointer to the handler function
Explanation

Secures an EVCB for an event with the descriptor desc and event class spec. Must be executed in a critical
section.

Return value
The event descriptor, if the function succeeds. On failure, it returns -1.

See also
CloseEvent(), DeliverEvent(), EnterCiriticalSection()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-55

OpenTh

Open a thread.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

unsigned long OpenTh(

unsigned long (*func)(), Pointer to the execution start function

unsigned long sp, Stack pointer value

unsigned long gp) Global pointer value

Explanation

Secures a TCB for a given thread, and initializes it with the arguments given. Must be executed in a critical
section.

The thread can be executed using ChangeTh().

Return value
The thread descriptor, if the function succeeds. On failure, it returns -1.

See also
CloseTh(), ChangeTh()

CONFIDENTIAL Run-Time Library Reference

1-56 Kernel Library Functions

read
Read data from a file

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long read (

long fd, File descriptor

void *buf, Pointer to read buffer address

long n) Number of bytes to read

Explanation

Reads n bytes from the descriptor fd to the area specified by buf.

Return value

The actual number of bytes read into the area. An error returns -1.

See also
open(), Iseek()

Run-Time Library Reference

CONFIDENTIAL

Kernel Library Functions 1-57

realloc2
Change a block’s memory allocation.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 3.6 12/14/98

Syntax

void *realloc2(

void *block, Area to be reallocated

size_t s) Size of area to be reallocated
Explanation

Changes the size of the memory block previously allocated to s bytes. Same as malloc2() when block is
NULL. Corresponds to InitHeap2().

Return value

A pointer to the reallocated memory block. The address may be from the original. If reallocation fails, NULL
is returned, and the original block is not released.

See also
calloc2(), malloc2(), free2()

CONFIDENTIAL Run-Time Library Reference

1-58 Kernel Library Functions

realloc3
Change a block’s memory allocation.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 4.0 12/14/98

Syntax

void *realloc3
(void *block, Area to be reallocated
size_t s) Size of area to be reallocated

Explanation

Changes the size of the memory block previously allocated to s bytes. When block is NULL, it operates in
the same way as malloc3|().

Return value
A pointer to the reallocated block address; this address may be different from the original. If reallocation

fails, NULL is returned, and the original block is not released. NULL is also returned if s is O.

See also
InitHeap3)(), calloc3(), malloc3(), free3()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-59

rename
Change a file name.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long rename(

char “src, Pointer to the old filename
char *dest) Pointer to the new filename
Explanation

Changes a filename from src to dest. In both cases, the full path from the device name must be specified.
This function is only effective on writeable file systems.

Return value
1 if it succeeds, and O otherwise.

See also
open()

CONFIDENTIAL Run-Time Library Reference

1-60 Kernel Library Functions

ResetRCnt

Reset a root counter.

Library Header File Introduced Documentation Date

libapi.lib libapi.h 2.X 12/14/98

Syntax

long ResetRCnt(
long spec) Root counter specification

Explanation
Resets the root counter spec to 0.

Return value
1 if it succeeds, and 0 otherwise. (0 is always returned if you specify RCntCNTS3, since it can’t be set.)

See also
SetRCnt(), GetRCnt(), StartRCnt(), StopRCnt()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-61

ReturnFromException

Return from exception.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

void ReturnFromException(void)

Explanation

Accesses the exception context and returns from exception processing. It is used in an event handler or
callback function.

See also
Exception()

CONFIDENTIAL Run-Time Library Reference

1-62 Kernel Library Functions

SetConf

Modify the kernel configuration.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax

long SetConf(

unsigned long ev, Number of event control block (EvCB) elements
unsigned long tcb, Number of task control block (TCB) elements
unsigned long sp) Ignored

Explanation

Modifies system configuration parameters. The contents of event and task control blocks, and all settings
for event handlers and callback functions in each library, are destroyed. However, file descriptors are not
affected (all the descriptors should be closed before SetConf() call) because most of the device drivers are
driven by the event handler.

All patches to the kernel are invalidated.

This function should be executed at the head of the first execution file. The operations of libraries initialized
before the execution of this function are not ensured.

This function eliminates the 1ISO-9660 file system installed in the kernel immediately after activation (call
_96_init() to reinstate). The result of operations on the opened files are not predictable.

If the number of the designated elements exceeds the maximum, the operation of the system after the
execution of this function is not defined.

Return value
1 if the function succeeds, 0 otherwise.

See also
GetConf()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-63

SetMem

Modify the valid memory size.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

void SetMem(
unsigned long n) Valid memory size (in megabytes)

Explanation

Changes the valid memory size to n. It must be 2 or 8 (megabytes); any other values are ignored.
Memory access out of the valid range causes a CPU exception regardless of how much physical memory
is present.

See also
SetConf()

CONFIDENTIAL Run-Time Library Reference

1-64 Kernel Library Functions

SetRCnt

Set a root counter.

Library Header File Introduced Documentation Date

libapi.lib libapi.h 2.X 12/14/98

Syntax

long SetRCnt(

long spec, Root counter specification
unsigned short farget, Target value

long mode) Mode

Explanation

Sets the root counter in spec to the target value in target, and the mode in mode.

Return value
1 if it succeeds, and 0 otherwise. (0 is always returned if you specify RCntCNT3, since it can’t be set.)

See also
GetRCnt(), StartRCnt(), StopRCnt(), ResetRCnt()

Run-Time Library Reference CONFIDENTIAL

SetSp

Set the stack pointer.

Kernel Library Functions 1-65

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

unsigned long SetSp(

unsigned long new-sp) value to set sp register

Explanation

Sets the sp register to the value new-sp.

Return value
The previous sp register value.

See also
OpenTh(), Load(), Exec(), GetSp()

CONFIDENTIAL

Run-Time Library Reference

1-66 Kernel Library Functions

StartPAD

Start reading the controller.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long StartPAD(void)

Explanation

Triggered by the interruption of a vertical retrace line, this function starts to read the controller.
ChangeClearPAD (1) is executed internally.

Interrupts are permitted.

Return value
Always returns 1.

See also
InitPAD(), ChangeClearPAD(), StopPAD()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-67

StartRCnt

Start a root counter.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long StartRCnt(
long spec) Root counter

Explanation
Enables interrupts for root counter spec.

Return value
1 if it succeeds, and 0 otherwise. (0 is always returned if you specify RCntCNTS3, since it can’t be set.)

See also
GetRCnt(), ResetRCnt(), SetRCnt(), StopRCnt()

CONFIDENTIAL Run-Time Library Reference

1-68 Kernel Library Functions

StopPAD

Stop reading the controller.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

void StopPAD(void)

Explanation
Stops reading the controller. Interrupts are not permitted.

See also
InitPAD(), ChangeClearPAD(), StartPAD()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-69

StopRCnt

Stop a root counter.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long StopRCnt(
long spec) Root counter

Explanation
Disables interrupts for root counter spec.

Return value
1 if it succeeds, and 0 otherwise. (0 is always returned if you specify RCntCNTS3, since it can’t be set.)

See also
StartRCnt(), SetRCnt(), ResetRCnt(), GetRCnt()

CONFIDENTIAL Run-Time Library Reference

1-70 Kernel Library Functions

SwEnterCriticalSection
Suppress interrupts.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98
Syntax

void SwEnterCriticalSection(void)

Explanation

Suppresses interrupts. Because no system call interrupt is generated internally, this function can be
invoked in event handling and callback functions. It must be executed in a critical section.

See also
EnterCriticalSection(), SwEXxitCriticalSection|)

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-71

SwEXxitCriticalSection
Enable interrupts.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98
Syntax

void SwEXxitCriticalSection(void)

Explanation

Enables interrupts. Because no system call interrupt is generated internally, this function can be invoked in
event handling and callback functions.

Must be executed in a critical section.

See also
EnterCriticalSection(), SwEXxitCriticalSection|()

CONFIDENTIAL Run-Time Library Reference

1-72 Kernel Library Functions

SystemError
Display the system error screen.

Library Header File Introduced Documentation Date

libapi.lib libapi.h 2.X 12/14/98

Syntax

void SystemError(
char c, Error identification character (Alphabetic character)
long n) Error identification code (O to 999)

Explanation
Displays a detected system error for the user. On the PlayStation®, it calls exit().

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-73

TestEvent
Test an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long TestEvent(
unsigned long event) Event descriptor

Explanation

Checks to see whether or not the event specified by the descriptor event has occurred. If so, the function
restores the event state to EVStACTIVE.

Return value
1 if the event is found to have occurred, O otherwise.

See also
DeliverEvent(), EnableEvent(), WaitEvent(), OpenEvent(), CloseEvent(), UnDeliverEvent(), DisableEvent()

CONFIDENTIAL Run-Time Library Reference

1-74 Kernel Library Functions

undelete
Resurrect a file.

Library Header File Introduced Documentation Date

libapi.lib libapi.h 2.X 12/14/98

Syntax

long undelete(
char “name) Pointer to filename

Explanation
Resurrects the previously deleted file specified by name.

Return value
1 if it succeeds, and O otherwise.

See also
erase)

Run-Time Library Reference CONFIDENTIAL

UnDeliverEvent
Cancel an event.

Kernel Library Functions 1-75

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98
Syntax

void UnDeliverEvent(
unsigned long ev7,
long ev2)

Explanation

Cause descriptor
Event class

Returns event state from EvStALREADY (already occurred) to EVStACTIVE if the event mode is
EvMANOINTR. Must be executed in a critical section.

See also

DeliverEvent(), EnableEvent(), OpenEvent(), TestEvent(), WaitEvent(), EnterCriticalSection()

CONFIDENTIAL

Run-Time Library Reference

1-76 Kernel Library Functions

WaitEvent
Wait for the occurrence of an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

long WaitEvent(

unsigned long event) Event descriptor
Explanation

Waits until an event specified by the descriptor event occurs, and returns after restoring the event state to
EvStACTIVE.

Return value
1 if it succeeds, and O otherwise.

See also
TestEvent(), OpenEvent(), CloseEvent(), DeliverEvent(), UnDeliverEvent(), DisableEvent(), EnableEvent()

Run-Time Library Reference CONFIDENTIAL

write

Write data to a file.

Kernel Library Functions 1-77

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2. 12/14/98

Syntax

int write(

int fd, File descriptor

char “buf, Pointer to the write buffer address

int n) Number of bytes to be written

Explanation

Writes n bytes from the descriptor fd to the area specified by buf.

Return value

The number of bytes actually written to the area. If there is an error, -1 is returned.

See also
open(), Iseek()

CONFIDENTIAL

Run-Time Library Reference

1-78 Kernel Library Functions

_96_init

Install the 1ISO-9660 file system.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.X 12/14/98

Syntax

void _96_init(void)

Explanation
Installs the 1ISO-9660 file system driver that manages access to the CD-ROM.

See also
_96_remove()

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-79

_96_remove

Remove the ISO-9660 file system.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 2. 12/14/98

Syntax

void _96_remove(void)

Explanation
Removes the ISO-9660 file system driver that manages access to the CD-ROM.

See also
_96_init()

CONFIDENTIAL Run-Time Library Reference

1-80 Kernel Library Functions

_boot
Reboot the system.

Library Header File Introduced Documentation Date

libapi.lib libapi.h 2.X 12/14/98

Syntax
void _boot(void)

Explanation

Reboots the system. This function is useful for demonstration programs; don’t use it for general title
applications.

Run-Time Library Reference CONFIDENTIAL

Kernel Library Functions 1-81

_get_errno

Get the latest I/O error code.
Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax

int _get_errno(void)

Explanation
Gets the latest error code from all file descriptors. (Error codes are defined in sys/errmo.h.)

Return value
Error code.

See also
_get_error()

CONFIDENTIAL Run-Time Library Reference

1-82 Kernel Library Functions

_get_error
Get an error code for a file descriptor.

Library Header File Introduced Documentation Date

libapi.lib libapi.h 3.0 12/14/98

Syntax

int_get_error(
int fd) File descriptor

Explanation
Gets the most recent error code of the specified file descriptor. (Error codes are defined in sys/errno.h.)

Return value
Error code.

See also
get_ermo()

Run-Time Library Reference CONFIDENTIAL

Chapter 2: Standard C Library
Table of Contents

Functions
abs 2.3
atoi 2.4
atol 2.5
bcmp 2-6
bcopy 2-7
bsearch 2.8
bzero 2.9
calloc 2.10
exit 2-11
free 2.12
getc 2-13
getchar 2-14
gets 2-15
iSXXXX... 2-16
labs 217
longjmp 2-18
malloc 2.19
memchr 2-20
memcmp 2-21
memcpy 2-22
memmove 293
memset 224
printf 2.95
putc 2-26
putchar 2.07
puts 2-28
gsort 2-29
rand 2-30
realloc 2-31
setjmp 2-32
sprintf 2.33
srand 2.34
strcat 2.35
strchr 2.36
stremp 2.37
strcpy 2-38
strcspn 2-39
strlen 2-40
strncat 2-41
strncmp 2_42
strncpy 2-43
strpbrk 2_44
strrchr 2.45
strspn 2_46
strstr 2_47
strtok .48
strtol 249
strtoul 2-50
toascii 2-51
tolower 2-52
toupper 2-53

CONFIDENTIAL Run-Time Library Reference

2-2

Run-Time Library Reference

CONFIDENTIAL

Standard C Library Functions 2-3

abs

Calculate absolute value.

Library Header File Introduced Documentation Date
libeNibe2.lib abs.h 2.X 12/14/98

Syntax

int abs(

int /) Integer
Explanation

Calculates the absolute value of the integer /. On the R3000, int and long are the same size, so this function
is equivalent to labs).

Return value
Absolute value of the argument.

See also
labs()

CONFIDENTIAL Run-Time Library Reference

2-4 Standard C Library Functions

atoi

Convert a string to an integer.
Library Header File Introduced Documentation Date
libcNibe2.1ib convert.h 2. 12/14/98

Syntax

int atoi(

char *s) Pointer to a character string

Explanation

Converts a string to its integer equivalent. On this system, it is equivalent to atol().

Return value
Integer equivalent of s.

See also
atol(), strtol(), strtoul()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions 2-5

atol

Convert a character string to a long.
Library Header File Introduced Documentation Date
libcNibe2.1ib convert.h 2. 12/14/98

Syntax

long atol(

char *s) Pointer to a character string

Explanation

Converts a string to its long equivalent. On this system, it is equivalent to atoi).

Return Value
Integer equivalent of s.

See also
atoi(), strtol(), strtoul

CONFIDENTIAL Run-Time Library Reference

2-6 Standard C Library Functions

bcmp

Compare memory blocks.
Library Header File Introduced Documentation Date
libcNibe2.1ib memory.h 2. 12/14/98

Syntax

int becmp(

u_char *b7, Pointer to first block

u_char *b2, Pointer to second block

int n) Number of bytes to be compared

Explanation

Compares the first n bytes of b7 and b2.

Return value
Oifb1==b2.
<0ifb1 <b2
>0ifb7 > b2.

See also
memcmp()

Run-Time Library Reference CONFIDENTIAL

bcopy

Copy a memory block.

Standard C Library Functions 2-7

Library Header File Introduced Documentation Date
libcNibe2.1ib memory.h 2. 12/14/98

Syntax

void bcopy(

u_char *src, Pointer to copy source

u_char *dest, Pointer to copy destination

int n) Number of bytes copied

Explanation

Copies the first n bytes of src to dest.

See also
memcpy(), memmove()

CONFIDENTIAL

Run-Time Library Reference

2-8 Standard C Library Functions

bsearch

Perform a binary search.

Library Header File Introduced Documentation Date
libcNibe2.lib stdlib.h 2.X 12/14/98

Syntax

void *bsearch(

u_char *key, Pointer to the value to be searched for

u_char *base, Pointer to the array to be searched

size_tn, Number of elements

size_tw, Size of one element

int (“fcmp)()) Pointer to address of comparison function

Explanation

Carries out a binary search on a table of n items (of item size w) starting from base, for an item matching

key.

Return value

The address of the first item matching the search key. If no matching item is found, O is returned.

Run-Time Library Reference

CONFIDENTIAL

bzero

Fill a memory block with zeros.

Standard C Library Functions 2-9

Library Header File Introduced Documentation Date
libcNibe2.1ib memory.h 2. 12/14/98

Syntax

void bzero(

u_char "p, Pointer to memory block

int n) Size

Explanation

Sets n bytes to the value 0, starting from p..

CONFIDENTIAL

Run-Time Library Reference

2-10 Standard C Library Functions

calloc

Allocate main memory.

Library Header File Introduced Documentation Date

libeNibe2.lib malloc.h 2.X 12/14/98

Syntax

void *calloc(
size_tn, Number of blocks
size_t s) Size of block

Explanation
Allocates a memory area of n blocks of s bytes each from the heap and initializes it to O.

Return value
A pointer to the memory area allocated. If the function fails, it returns NULL.

See also
malloc(), realloc(), free()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions 2-11

exit

Terminate a program normally.
Library Header File Introduced Documentation Date
libcNibe2.1ib stdlib.h 2.X 12/14/98

Syntax

void exit(

int ern) Error code

Explanation

When executed on the PlayStation®, a system error notice window is displayed (including the error code),
and the system enters an infinite loop. When executed on a development machine, the program currently
being executed is terminated, and the system returns to the debug monitor.

CONFIDENTIAL Run-Time Library Reference

2-12 Standard C Library Functions

free

Release an allocated memory block.
Library Header File Introduced Documentation Date
libcNibe2.1ib malloc.h 2. 12/14/98

Syntax

void free(

void *block) Pointer to a memory block allocated by a function such as malloc().

Explanation

Releases a memory block that was allocated by calloc(), malloc() or realloc).

See also
calloc(), malloc(), realloc()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions 2-13

getc

Get one character from a stream.
Library Header File Introduced Documentation Date
libcNibe2.1ib stdio.h 2. 12/14/98

Syntax

char getc(

int fd) File descriptor

Explanation

Gets one character from the file indicated by fd.

Devices and systems with a block size of 1 may all be used as the standard input/output stream as follows:

e Close (0);
e Close (1);
* Open (<device hame>, O_RDONLY);

(
e Open (<device name>, O_WRONLY);

Return value
The character read. If the end of file is reached, or when an error is generated, the function returns EOF.

See also
getchar(), gets(), putc()

CONFIDENTIAL Run-Time Library Reference

2-14 Standard C Library Functions

getchar

Get one character from the standard input stream.
Library Header File Introduced Documentation Date
libeNibe2.lib stdio.h 2.X 12/14/98

Syntax

char getchar(void)

Explanation
Gets one character from the standard input stream. It is the same as getc(stdin).

Return value
The character read. If the end of file is reached, or when an error is generated, the function returns EOF.

See also
getc(), gets(), putchar()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions

gets

Read a character string from standard input.
Library Header File Introduced Documentation Date
libcNibe2.lib stdio.h 2.X 12/14/98

Syntax

char *gets(

char *s) Pointer to storage destination for input character string

Explanation

Reads a character string from the standard input stream (stdin) and stores it in s until a new-line character
is read.

Return value

If this function succeeds, it returns s. The new-line character is discarded and a null character is written
immediately after the last character read. If it reaches the end of the file, or if an error is generated, it returns
NULL.

See also
getc(), getchar(), puts()

CONFIDENTIAL Run-Time Library Reference

2-16 Standard C Library Functions

iIsXXXX...

Test characters.

Library Header File Introduced Documentation Date

libeNibe2.1ib ctype.h 2.X 12/14/98

Syntax
isXXXX(c) Character

Explanation
These are macros that perform the following tests on the character c:

Table 2-1: Character Macros

Name Conditions

isalnum(c) isalpha(c) Il isdigit(c)

isalpha(c) isupper(c) Il islower(c)

isascii(c) ASCII character

iscntrl(c) Control character

isdigit(c) Decimal

isgraph(c) Printing characters other than space

islower(c) Lower-case character

isprint(c) Printing characters including space

ispunct(c) Printing characters other than space and
alphanumerics

isspace(c) Space, new page, new line, restore, tab

isupper(c) Upper-case character

isxdigit(c) Hexadecimal

Return value
Non-zero if the character ¢ satisfies the test conditions; O otherwise.

See also
toascii(), tolower(), toupper()

Run-Time Library Reference CONFIDENTIAL

labs

Calculate absolute value.

Standard C Library Functions 2-17

Library Header File Introduced Documentation Date
libcNibc2.lib convert.h 2.X 12/14/98

Syntax

long labs(

long /) Long value

Explanation

Calculates the absolute value of /.

Return value
Absolute value of the argument.

See also
abs()

CONFIDENTIAL

Run-Time Library Reference

2-18 Standard C Library Functions

longjmp

Non-local jump.

Library Header File Introduced Documentation Date

libeNibe2.ib setimp.h 2.X 12/14/98

Syntax

void longjmp(
jmp_buf p, Environment storage variable.
int val) setjimp() Return value

Explanation
Makes a non-local jump to the destination specified by p.

See also
setimp()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions

malloc

Allocate main memory.

Library Header File Introduced Documentation Date
libcNibe2.1ib malloc.h 2. 12/14/98

Syntax

void *malloc(
size_t s) Number of bytes to be allocated

Explanation
Allocates a block of s bytes from the memory heap.

Note that the memory heap is defined as follows when the user program is activated:

Bottom address: top address of module + 4.
Top address: available memory -32KB.

This function has a bug whereby the area is not completely released in free(). This function can be replaced
by malloc2() or malloc3() from libapi. For more information, refer to the Kernel Library chapter of the Run-
Time Library Overview.

Return value
A pointer to the secured memory block. If allocation fails, NULL is returned.

See also
calloc(), realloc(), free()

CONFIDENTIAL Run-Time Library Reference

2-19

2-20 Standard C Library Functions

memchr

Search a memory block for a character.
Library Header File Introduced Documentation Date
libcNibe2.1ib memory.h 2. 12/14/98

Syntax

void *memchr(

u_char *s, Pointer to memory block

u_charc, Character

int n) Number of bytes

Explanation

Searches the memory block of n bytes starting from s, looking for the first appearance of the character c.

Return value
A pointer to the location at which ¢ was found. If ¢ was not found, NULL is returned.

See also
strchr()

Run-Time Library Reference CONFIDENTIAL

memcmp

Compare memory blocks.

Standard C Library Functions 2-21

Library Header File Introduced Documentation Date
libcNibe2.lib memory.h 2.X 12/14/98

Syntax

void *memcmp(

u_char *s7, Pointer to first memory block

u_char *s2, Pointer to second memory block

int n) Number of bytes to be compared

Explanation

Compares the first n bytes of s7 and s2.

Return value

0ifs? =s2.
<0ifsT< s2.
>0ifs7 > s2.

See also
bcmp()

CONFIDENTIAL

Run-Time Library Reference

2-22 Standard C Library Functions

memcpy

Copy a memory block.

Library Header File Introduced Documentation Date
libcNibe2.1ib memory.h 2. 12/14/98
Syntax

void *memcpy(
u_char *dest,
u_char *src,

int n)

Explanation

Pointer to copy destination memory block
Pointer to copy source memory block
Number of bytes copied

Copies the first n bytes of src to dest.

Return value

Pointer to destination (dest).

See also
bcopy()

Run-Time Library Reference

CONFIDENTIAL

memmoyve

Copy a memory block.

Standard C Library Functions 2-23

Library Header File Introduced Documentation Date
libcNibe2.1ib memory.h 2. 12/14/98
Syntax

void *memmove(
u_char *dest,
u_char *src,

int n)

Explanation

Pointer to copy destination memory block
Pointer to copy source memory block

Number of bytes copied

Copies the first n bytes of src to dest. The block is copied correctly, even between overlapping objects.

Return value

Pointer to destination (dest).

See also
bcopy(), memcpy()

CONFIDENTIAL

Run-Time Library Reference

2-24 Standard C Library Functions

memset

Write a character to a memory block.
Library Header File Introduced Documentation Date
libcNibe2.1ib memory.h 2. 12/14/98

Syntax

void *memset(

u_char *s, Pointer to memory block

u_charc, Character

int n) Number of characters

Explanation

Writes ¢ to the first n bytes of s.

Return value
Pointer to block (s).

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions 2-25

printf

Print formatted output.

Library Header File Introduced Documentation Date
libcNibe2.1ib stdio.h 2. 2/24/99

Syntax

int printf(

char *fmt[, argument ...]) Pointer to input format character string

Explanation

See a C language reference. Conversion directives f, e, E, g and G cannot be used. Use printf2() from
libmath for floating-point representations.

Note: When printf() (or printf2(), putchar(), or puts()) is being executed in the main flow, and an interrupt
occurs, text corruption or a hang-up can result if printf() is called during the interrupt. Therefore, pay
attention to the call timing when calling printf() in an interrupt.

Return value
The length of the output character string. If an error is generated, the function returns NULL.

See also
sprintf()

CONFIDENTIAL Run-Time Library Reference

2-26 Standard C Library Functions

putc

Output one character to a stream.
Library Header File Introduced Documentation Date
libcNibe2.1ib stdio.h 2. 12/14/98

Syntax

void putc(

char c, Output character

int fd) File descriptor

Explanation

Outputs a character ¢ to the file indicated by fd.

Return value
c if the function succeeds; EOF if an error is generated.

See also
getc(), putchar(), puts()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions 2-27

putchar

Output one character to the standard output stream.
Library Header File Introduced Documentation Date
libcNibe2.1ib stdio.h 2. 2/24/99

Syntax

void putchar(

char ¢) Output character

Explanation

Outputs a character ¢ to standard output. It is the same as putc(stdout).

Note: When printf() (or printf2(), putchar(), or puts()) is being executed in the main flow, and an interrupt
occurs, text corruption or a hang-up can result if printf() is called during the interrupt. Therefore, pay
attention to the call timing when calling printf() in an interrupt.

Return value
c if the function succeeds; EOF if an error is generated.

See also
getchar(), putc(), puts()

CONFIDENTIAL Run-Time Library Reference

2-28 Standard C Library Functions

puts

Output a character string to the standard output stream.
Library Header File Introduced Documentation Date
libcNibe2.lib stdio.h 2.X 2/24/99

Syntax

void puts(

char *s) Pointer to output character string

Explanation

Outputs a character string ending in NULL to the standard output stream (stdout), and finally outputs a
newline character.

Note: When printf() (or printf2(), putchar(), or puts()) is being executed in the main flow, and an interrupt
occurs, text corruption or a hang-up can result if printf() is called during the interrupt. Therefore, pay
attention to the call timing when calling printf() in an interrupt.

Return value
A non-negative value, if the function succeeds; EOF if an error is generated.

See also
gets(), putc(), putchar()

Run-Time Library Reference CONFIDENTIAL

gsort

Perform a quick sort.

Standard C Library Functions 2-29

Library Header File Introduced Documentation Date
libcNibe2.1ib qgsort.h 2. 12/14/98

Syntax

void gsort(

void *base, Pointer to storage destination of array to be sorted

size_tn, Number of elements

size_tw, Size of on element

int (“fcmp)()) Pointer to address of comparison function

Explanation

Quick-sorts a table of n items (of item size w) starting with base, with fcmp as the comparison function.

CONFIDENTIAL

Run-Time Library Reference

2-30 Standard C Library Functions

rand

Generate a random number.
Library Header File Introduced Documentation Date
libeNibe2.lib rand.h 2.X 12/14/98

Syntax

int rand(void)

Explanation
Generates a pseudo-random number from 0 to RAND_MAX (Ox7FFF=32767).

Return value
The generated pseudo-random number.

See also
srand()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions 2-31

realloc

Change heap memory allocations.
Library Header File Introduced Documentation Date
libcNibe2.lib malloc.h 2.X 12/14/98

Syntax

void *realloc(

void *block, Pointer to a block allocated by a function such as malloc()

size_ts; New size

Explanation

Takes a previously allocated block and contracts it or expands it to s bytes. If block is NULL, this function
works in the same way as malloc.

Return value
The address of the reallocated block. May be different from the old address.

If the allocation fails, the function returns NULL, and the old block is not released.

See also
calloc(), malloc(), free()

CONFIDENTIAL Run-Time Library Reference

2-32 Standard C Library Functions

setjimp

Defines non-local jump destination.
Library Header File Introduced Documentation Date
libcNibe2.1ib setimp.h 2. 12/14/98

Syntax

int setjmp(

jmp_buf p) Environment storage variable

Explanation

Stores the destination information for a non-local jump at p. If longjmp(p, val) is executed, the system
returns from setjimp().

Return value
Returns the value given to the second argument of longimp() when the jump is executed.

See also
longjmp()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions 2-33

sprintf

Write formatted output to a string.

Library Header File Introduced Documentation Date
libcNibe2.1ib stdio.h 2. 12/14/98

Syntax

long sprintf(

char *s, Storage location for variable character string

const char *fmt[,argument...)) Input format character string

Explanation

This function is like printf(), except that it writes the formatted output to a string, followed by a null
character. Refer to a C language reference for a detailed explanation of the input format.

The conversion designators [f] [e] [E] [g] [G] are not supported. Use sprintf2() from the math library to
display floating points.

Return value
The length of the output character string. NULL is returned when an error occurs.

See also
printf(), sprintf2() see libomath)

CONFIDENTIAL Run-Time Library Reference

2-34 Standard C Library Functions

srand

Initialize the random number generator.
Library Header File Introduced Documentation Date
libcNibe2.1ib rand.h 2. 12/14/98

Syntax

void srand(

u_long seed) Random number seed

Explanation

Sets a new starting point for random number generation. The default is 1.

See also
rand()

Run-Time Library Reference CONFIDENTIAL

strcat

Concatenate character strings.

Standard C Library Functions 2-35

Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

char *strcat(

char *dest, Pointer to destination string

char *src) Pointer to source string

Explanation

Appends the character string src to the end of the character string dest.

Return value
Address of destination string (dest).

See also
strncaty()

CONFIDENTIAL

Run-Time Library Reference

2-36 Standard C Library Functions

strchr

Search for the first location at which a character appears in a string.
Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

char *strchr(

char *s, Pointer to character string searched

char ¢) Character searched for

Explanation

Searches for the first location at which the character ¢ appears in the character string s.

Return value
Address of the location at which ¢ appears. If ¢ has not been found, NULL is returned.

See also
strrehr(), strpbrk()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions 2-37

strcmp

Compare character strings.

Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

int stremp(
char *s7, Pointer to character string 1
char *s2) Pointer to character string 2

Explanation
Compares the character string s2 with the character string s7, treating each character as an unsigned char.

Return value
<0ifsT<s2

0ifs? =s2
>0ifs71 > 82

See also
strncmp()

CONFIDENTIAL Run-Time Library Reference

2-38 Standard C Library Functions

strcpy

Copy a character string.

Library Header File Introduced Documentation Date

libeNibe2.lib strings.h 2.X 12/14/98

Syntax

char *strcpy(
char *dest, Pointer to destination location.
char *src) Pointer to source character string

Explanation
Copies the character string src to the character string dest.

Return value
Pointer to destination string (dest).

See also
strncpy()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions 2-39

strcspn

Search for a string of characters not included in the a character set.
Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

int strespn(

char *s7, Pointer to string

char *s2) Pointer to character set

Explanation

Returns the length of the first part of the character string s7 consisting only of characters not included in
the character string s2.

Return value
The length of the partial character string found.

See also
strpbrk(), strtok(), strspn()

CONFIDENTIAL Run-Time Library Reference

2-40 Standard C Library Functions

strlen

Count characters in a string.

Library Header File Introduced Documentation Date

libeNibe2.lib strings.h 2.X 12/14/98

Syntax

int strlen(
char *s) Pointer to character string

Explanation
Counts the number of characters in string s.

Return value
The number of characters in the string.

Run-Time Library Reference CONFIDENTIAL

strncat

Concatenate character strings.

Standard C Library Functions 2-41

Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

char *strncat(

char *dest, Pointer to destination string

char *src, Pointer to source string

int n) Number of characters concatenated

Explanation

Appends the first n characters from src to the end of the character string dest.

Return value

Pointer to destination string (dest).

See also
strcat()

CONFIDENTIAL

Run-Time Library Reference

2-42 Standard C Library Functions

strncmp

Compare character strings.
Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

int strncmp(

char *s7, Pointer to character string 1

char *s2, Pointer to character string 2

int n) Number of characters compared

Explanation

Compares the first n characters of s7 and s2, treating each character as an unsigned char.

Return value
One of the following values, depending on the comparison result (the values are the same as for strcmp).

<0ifs7<s2
0ifs? =s2
>0ifs71 >s2

See also
stremp()

Run-Time Library Reference CONFIDENTIAL

strncpy

Copy a character string.

Standard C Library Functions 2-43

Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

char *strncpy(

char *dest, Pointer to destination string

char *src, Pointer to source string

int n) Number of bytes to copy

Explanation

Copies the first n bytes of src to the character string dest.

Return value
Pointer to destination string (dest).

See also
strepy()

CONFIDENTIAL

Run-Time Library Reference

2-44 Standard C Library Functions

strpbrk

Search for the first occurrence of a character in a character set.
Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

char *strpbrk(

char *s7, Pointer to character string searched

char *s2) Pointer to character group

Explanation

Searches for the first location at which any of the characters contained in the character string s2 appear
within the character string s7.

Return value
The address of the first character found. If no character was found, NULL is returned.

See also
strespn(), strtok()

Run-Time Library Reference CONFIDENTIAL

strrchr

Search for the last location of a character in a character string.

Standard C Library Functions 2-45

Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

char *strrchr(

char *s, Pointer to character string searched

char ¢) Character searched for

Explanation

Searches for the last occurrence of the character ¢ within the character string s.

Return value

The address of the last occurrence of c. If ¢ does not occur, NULL is returned.

See also
strchr(), strpbrk()

CONFIDENTIAL

Run-Time Library Reference

2-46 Standard C Library Functions

strspn

Search for the part of a string consisting solely of characters in a character set.
Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

int strspn(

char *s7, Pointer to string

char *s2) Pointer to character set

Explanation

Returns the length of the first part of the character string s7 which consists solely of characters included in
the character string s2.

Return value
The length of the partial character string found.

See also
strespn(), strpbrk()

Run-Time Library Reference CONFIDENTIAL

strstr

Search for the location of a partial character string.

Standard C Library Functions 2-47

Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

char *strstr(

char *s7, Pointer to character string searched

char *s2) Pointer to string searched for

Explanation

Searches for the first location of character string s2 within character string s7.

Return value
The address of s2. If it was not found, the function returns NULL.

See also
strchr()

CONFIDENTIAL

Run-Time Library Reference

2-48 Standard C Library Functions

strtok

Search for a string demarcated by characters in a character set.
Library Header File Introduced Documentation Date
libeNibe2.lib strings.h 2.X 12/14/98

Syntax

char *strtok(

char *s7, Pointer to character string searched

char *s2) Pointer to separator characters

Explanation

Treats character string s7 as a set of tokens punctuated by one or more characters from the separator
character string s2. The first call in the sequence searches s7 for the first character that is not contained
within s2.

The first time strtok() is called, the starting address of the first token of s1 is returned, and a NULL character
is written in immediately after this token. The address of s7 is stored in the function, and then, when strtok()
is called with NULL entered as the first argument, a search is carried out until there are no tokens left in the
character string s7.

Return value
The starting address of the tokens found in s7. If it does not find any s1 tokens, strtok() returns NULL.

See also
strespn(), strpbrk()

Run-Time Library Reference CONFIDENTIAL

Standard C Library Functions 2-49

strtol

Convert a character string to a long.
Library Header File Introduced Documentation Date
libcNibe2.1ib convert.h 2. 12/14/98

Syntax

long strtol(

char *s, Pointer to character string

char *endp, Storage destination of pointer to a non-convertible character string

unsigned int base) Radix specification

Explanation

Converts a character string s to a long (the same as an int in R3000). s must be formatted as follows:

[ws][sn][ddd]

[ws] white space (may be omitted)
[sn] sign (may be omitted)

[ddd] number string (Mmay be omitted)

The value of base determines the format of [ddd]. The letters a (or A) thru z (or Z) are ascribed values from
10-35. Only values less than base may be included in [ddd]. For some values of base, optional characters
may precede the sequence of letters and digits following the sign (if present).

Table 2-2
Base Value Optional Characters
2 Ob, OB
8 IEO’ ”» “O”
16 0x, OX

The function strtol() stops converting when it encounters a non-convertible character, and if endp is not
NULL, it sets endp as the pointer to the character at which it stopped converting.

Return value
The result obtained by converting the input value s to a long. If an error is generated, it returns O.

See also
atol(), strtoul()

CONFIDENTIAL Run-Time Library Reference

2-50 Standard C Library Functions

strtoul

Convert a character string to an unsigned long.
Library Header File Introduced Documentation Date
libcNibe2.1ib convert.h 2. 12/14/98

Syntax

u_long strtoul(

char *s, Pointer to character string

char *endp, Storage destination of pointer to a non-convertible character string

int base) Radix specification

Explanation

Converts a character string s to unsigned long type (the same as unsigned int type in R3000). s must be
formatted as follows.

[ws][sn][ddd]

[ws] white space (may be omitted)
[sn] sign (may be omitted)

[ddd] number string (may be omitted)

The value of base determines the format of [ddd]. The letters a (or A) thru z (or Z) are ascribed values from
10-35. Only values less than base may be included in [ddd]. For some values of base, optional characters
may precede the sequence of letters and digits following the sign (if present).

Table 2-3
Base Value Optional Characters
2 Ob, OB
8 IEO’ ”» “O”
16 0x, OX

The function strtoul() stops converting when it encounters a non-convertible character, and if endp is not
NULL, it sets endp as the pointer to the character at which it stopped converting.

Return value
The result obtained by converting the input value s to a long.

See also
atol(), strtol()

Run-Time Library Reference CONFIDENTIAL

toascii
Mask bit 7 of the input value.

Standard C Library Functions 2-51

Library Header File Introduced Documentation Date
libeNibe2.lib ctype.h 2.X 12/14/98

Syntax

toascii (€) Value

Explanation

This macro returns an ASCII value equal to the low 7 bits of the input.

Return value
The low 7 bits of the input value c.

See also
iISXXXX()

CONFIDENTIAL

Run-Time Library Reference

2-52 Standard C Library Functions

tolower

Convert a letter to lower-case.
Library Header File Introduced Documentation Date
libcNibe2.1ib ctype.h 2.X 12/14/98

Syntax

tolower(c) Character

Explanation

This macro converts a character ¢ to lower case. The behavior of this macro when it is given a value not an
upper-case letter is undefined.

Return value
The lower-case letter that corresponds to c.

See also
toupper(), isXXXX()

Run-Time Library Reference CONFIDENTIAL

toupper

Converts a character to upper case.

Standard C Library Functions 2-53

Library Header File Introduced Documentation Date
libcNibe2.1ib ctype.h 2.X 02/15/98

Syntax

toupper(c) Character

Explanation

This macro converts a character ¢ to upper case. The behavior of this macro when it is given a value not a

lower-case letter is undefined.

Return value

The upper-case letter that corresponds to the character c.

See also
tolower(), iIsXXXX)

CONFIDENTIAL

Run-Time Library Reference

Chapter 3: Math Library
Table of Contents

Functions
acos 3-3
asin 3-4
atan 3-5
atan2 3-6
atof 3-7
ceil 3-8
cos 3-9
cosh 3-10
P 3-11
fabs 3-12
floor 3-13
frmod 3-14
frexp 3-15
hypot 3-16
ldexp 3-17
log 3-18
log10 3-19
modf 3-20
pow 3-21
printf2 3-22
sin 3-23
sinh 3-24
sprintf2 3-25
sart 3-26
strtod 3-27
tan 3-28
tanh 3-29

CONFIDENTIAL Run-Time Library Reference

3-2

Run-Time Library Reference

CONFIDENTIAL

Math Library Functions 3-3

acos

Arccosine.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double acos(
double x) Value whose arccosine is to be determined, ranging from -1 to 1

Explanation
Determines the arccosine of x.

Return value
Arccosine of x, ranging from O to pi.

Error handling: if fabs(x)>1, O is returned, and math_errmo is set to EDOM (domain error).

See also
cos(), asin(), atan(), atan2()

CONFIDENTIAL Run-Time Library Reference

3-4 Math Library Functions

asin

Arcsine.

Library Header File Introduced Documentation Date

libmath.lib libmath.h 3.0 12/14/98

Syntax

double asin(
double x) Value whose arcsine is to be determined, ranging from -1 to 1.

Explanation
Determines the arcsine of x.

Return value
Arcsine of x, ranging from -pi/2 to pi/2.

Error handling: if fabs(x)>1, O is returned, and math_errmo is set to EDOM (domain error).

See also
sin(), acos(), atan(), atan2()

Run-Time Library Reference CONFIDENTIAL

Math Library Functions 3-5

atan

Arctangent.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double atan(
double x) Value whose arctangent is to be calculated

Explanation
Determines the arctangent of x.

Return value
Arctangent of x, ranging from -pi/2 to pi/2 radians.

See also
tan(), asin(), acos(), atan2()

CONFIDENTIAL Run-Time Library Reference

3-6 Math Library Functions

atan2

Arctangent.

Library Header File Introduced Documentation Date

libmath.lib libmath.h 3.0 12/14/98

Syntax

double atan2(
double x, double y) Floating-point values

Explanation
Determines the arctangent of x/y. If x and y are 0, a value of O is returned.

Return value
Arctangent of x/y, ranging from -pi to pi.

See also
acos(), asin(), tan(), atan()

Run-Time Library Reference CONFIDENTIAL

Math Library Functions

atof

Convert a string to a floating-point equivalent.
Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double atof{(

char *s) Pointer to a string

Explanation

Converts a string "s" to its floating-point (double type) equivalent.

Return value
The result from converting input string "s" to a double floating point equivalent.
Error handling: if there is an overflow error, either +HUGE_VAL(1.797693134862316e+308) or -HUGE_VAL

depending on the sign, is returned, and math_errno is set to ERANGE (range error). If there is an
underflow, O is returned, and math_errmo is set to ERANGE (range error).

See also
strtod()

CONFIDENTIAL Run-Time Library Reference

3-7

3-8 Math Library Functions

ceil

Minimum integer not less than x (ceiling function).
Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double ceil(

double x) Floating-point value

Explanation

Determines the minimum integer (double type) not less than x.

Return value
Minimum integer (double type) not less than x.

See also
floor()

Run-Time Library Reference CONFIDENTIAL

COSs

Cosine.

Math Library Functions 3-9

Library Header File

Introduced

Documentation Date

libmath.lib libmath.h

3.0

12/14/98

Syntax

double cos(

double x) Angle in radians

Explanation
Determines the cosine of x.

Return value
Cosine of x (cos(x)).

See also
sin(), tan(), acos()

CONFIDENTIAL

Run-Time Library Reference

3-10 Math Library Functions

cosh

Hyperbolic cosine.

Library Header File Introduced Documentation Date

libmath.lib libmath.h 3.0 12/14/98

Syntax

double cosh(
double x) Angle in radians

Explanation
Determines the hyperbolic cosine of x.

Return value
Hyperbolic cosine of x (cosh(x)).

See also
sinh(), tanh()

Run-Time Library Reference CONFIDENTIAL

exp

Exponent.

Math Library Functions 3-11

Library Header File Introduced

Documentation Date

libmath.lib libmath.h 3.0

12/14/98

Syntax

double exp(
double x) Floating-point value

Explanation
Determines the exponential of x.

Return value
e raised to the x-th power (e**x).

See also
pow(), log(), Idexp()

CONFIDENTIAL

Run-Time Library Reference

3-12 Math Library Functions

fabs

Absolute value (macro).

Library Header File Introduced Documentation Date

libmath.lib libmath.h 3.0 12/14/98

Syntax

double fabs(
double x) Floating-point value

Explanation
This macro determines the absolute value of a double.

Return value
Absolute value of x.

See also
abs (see libc), labs() (see libc)

Run-Time Library Reference CONFIDENTIAL

floor

Maximum integer not more than x (lower function).

Math Library Functions 3-13

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double floor(

double x) Floating-point value

Explanation

Determines the maximum integer (double type) not more than x.

Return value
Maximum integer not more than x (double type)

See also
ceil()

CONFIDENTIAL

Run-Time Library Reference

3-14 Math Library Functions

fmod

Floating-point remainder resulting from x/y.
Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double fmod(

double x, double y) Floating-point values

Explanation

Determines the floating-point remainder resulting from x/y. The sign of the return value is the same as that

of x.

Return value
Floating-point remainder resulting from x/y. If y is 0, O is returned.

See also
modf()

Run-Time Library Reference CONFIDENTIAL

Math Library Functions 3-15

frexp

Resolve into a normalized fraction and a power of 2.
Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double frexp(

double x, Floating-point value

int *n) Pointer to the part that is a power of 2

Explanation

Resolves x into a fraction in the interval [1/2, 1) (that is, 1/2<= x < 1), and a power of 2. The fractional part is
returned, and the power of 2 is stored in n.

A pair of square brackets [] indicates a closed area, while a pair of parentheses () indicates an open area.

Return value
The normalized fraction.

CONFIDENTIAL Run-Time Library Reference

3-16 Math Library Functions

hypot

Absolute value of a complex number.
Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double hypot(

double x, double y) Floating-point values

Explanation

Computes the square root of the sum of the squares of x and y.

Return value
Square root of the sum of (x**2) and (y**2).

Run-Time Library Reference CONFIDENTIAL

Idexp

Calculate a real number from a mantissa and an exponent.

Math Library Functions 3-17

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double Idexp(

double x, Floating-point value

int n) Integral exponent

Explanation

Determines a real number from a mantissa and an exponent.

Return value
Value of x multiplied by 2 raised to the n" power.

CONFIDENTIAL

Run-Time Library Reference

3-18 Math Library Functions

log

Natural logarithm.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double log(
double x) Value subjected to logarithmic operation

Explanation
Determines the natural logarithm of x.

Return value
Logarithm of x (In(x)) for x >0.

Error handling: If x = O, 1 is returned, and math_errmo = ERANGE (range error). If x <0, O is returned, and
math_errno = EDOM (domain error).

See also
exp(), log10()

Run-Time Library Reference CONFIDENTIAL

Math Library Functions

log10

Base 10 logarithm.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double log10(
double x) Value subjected to logarithmic operation

Explanation
Determines the logarithm of x whose base is 10.

Return value
Logarithm of x whose base is 10 (log10(x))

x must be greater than zero. Otherwise, an error results: If x =0, 1 is returned, and math_errno = ERANGE
(range error). If x <0, O is returned, and math_errmo = EDOM (domain error).

See also
log()

CONFIDENTIAL Run-Time Library Reference

3-20 Math Library Functions

modf

Separate a double into integral and fractional parts.
Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double modf(

double x, Floating-point value

double *y) Pointer to the integral part

Explanation

Separates x into integral and fractional parts. The integral part is stored in y, and the return value is the
fractional part. The signs of both parts are the same as the sign of x.

Return value
Fractional part of x.

See also
fmod()

Run-Time Library Reference CONFIDENTIAL

pow

Raise a double to a power.

Math Library Functions 3-21

Library Header File Introduced

Documentation Date

libmath.lib libmath.h 3.0

12/14/98

Syntax
double pow(
double x,
double y)

Floating-point value
Pointer to the integral part

Explanation
Raises x to the y-th power.

Return value
X raised to the y-th power(x**y).

Table 3-1
Condition Return value Error (math_ermo)
x==0 && y>0 0 Domain error (EDOM)
x==0 && y<=0 1 Domain error (EDOM)
x<0 && [y not an integer] 0 Domain error (EDOM)

See also

exp(), sqrt(

CONFIDENTIAL

Run-Time Library Reference

3-22 Math Library Functions

printf2

Convert formatted output as standard output (with floating-point and double-precision arguments).
Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 2/24/99

Syntax

int printf2(

const char *fmtf,argument...]) Pointer to input format character string

Explanation
The conversion directives [f] [e] [E] [g] and [G] can be used.

Stack consumption is greater than with printf().

Note: When printf() (or printf2(), putchar(), or puts()) is being executed in the main flow, and an interrupt
occurs, text corruption or a hang-up can result if printf() is called during the interrupt. Therefore, pay
attention to the call timing when calling printf() in an interrupt.

Return value
Output character length.

See also
sprintf2()

Run-Time Library Reference CONFIDENTIAL

Math Library Functions 3-23

sin

Sine.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double sin(
double x) Angle in radians

Explanation
Determines the sine of x.

Return value
Sine of x (sin(x)).

See also
cos(), tan(), asin()

CONFIDENTIAL Run-Time Library Reference

3-24 Math Library Functions

sinh

Hyperbolic sine.

Library Header File Introduced Documentation Date

libmath.lib libmath.h 3.0 12/14/98

Syntax

double sinh(
double x) Angle in radians

Explanation
Determines the hyperbolic sine of x.

Return value
Hyperbolic sine of x (sinh(x)).

See also
cosh(), tanh()

Run-Time Library Reference CONFIDENTIAL

Math Library Functions 3-25

sprintf2

Format output to a string (with floating-point and double-precision arguments).
Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

int sprintf2(

char *s, Pointer to destination string

const char *fmtf,argument...]) Pointer to input format character string

Explanation

The conversion directives [f] [e] [E] [g] and [G] can be used.

Stack consumption is greater than with sprintf.

Return value
Output character length.

See also
printf2()

CONFIDENTIAL

Run-Time Library Reference

3-26 Math Library Functions

sqrt

Square root.

12/14/98 Header File Introduced Documentation Date

libmath.lib libmath.h 3.0 12/14/98

Syntax

double sqrt(
double x) Non-negative floating-point value

Explanation
Determines the non-negative square root of x.

Error processing: if x<0, zero is returned, and math_errno = EDOM (domain error).

Return value
Square root of x.

See also
pow()

Run-Time Library Reference CONFIDENTIAL

Math Library Functions

strtod
Convert a string to a floating-point equivalent.

Library Header File Introduced Documentation Date

libmath.lib libmath.h 3.0 12/14/98
Syntax
double strtod(
char s, Input string
char **endp) Pointer to a string that was unable to be converted (output)
Explanation

Converts a string to a double type floating-point equivalent.

S must be one of the following:

[ws][sn][ddd]

[ws] White space (may be omitted)
[sn] Sign (may be omitted)

[ddd] Number string (may be omitted)

Stops converting upon encountering a character that was unable to be converted. If endp is not NULL, the
pointer to the character in error is set to endp.

Return value
The result from converting s to a floating point double type.

Error handling: if the converted value overflows, either +HUGE_VAL(1.797693134862316e+308) or -
HUGE_VAL according to the sign, is returned. O is returned for an underflow case, or if no conversion could
be performed. In either case, math_errno = ERANGE (range error).

See also
atof()

CONFIDENTIAL Run-Time Library Reference

3-27

3-28 Math Library Functions

tan

Tangent.

Library Header File Introduced Documentation Date

libmath.lib libmath.h 3.0 12/14/98

Syntax

double tan(
double x) Angle in radians

Explanation
Determines the tangent of x.

Return value
Tangent of x (tan(x)).

See also
sin(), cos(), atan(), atan2()

Run-Time Library Reference CONFIDENTIAL

tanh
Hyperbolic tangent.

Math Library Functions 3-29

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax

double tanh(

double x) Angle in radians

Explanation

Determines the hyperbolic tangent of x.

Return value
Hyperbolic tangent of x (tanh(x)).

See also
sinh(), cosh()

CONFIDENTIAL

Run-Time Library Reference

3-30 Math Library Functions

Run-Time Library Reference CONFIDENTIAL

Chapter 4: Memory Card Library
Table of Contents

Functions
INitCARD 4-3
StartCARD 4-4
StopCARD 4-5
_bu_init 4-6
_card_auto 4-7
_card_chan 4-8
_card_clear 4-9
_card_format 4-10
_card_info 4-11
_card_load 4-12
_card_read 4-13
_card_status 4-14
_card_wait 4-15
_card_write 4-16
_new_card 4-17

CONFIDENTIAL Run-Time Library Reference

4-2

Run-Time Library Reference

CONFIDENTIAL

Memory Card Library Functions 4-3

InitCARD
Initialize Memory Card BIOS.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

void InitCARD(
long val) Specify sharing with controller

Explanation
Initializes the Memory Card BIOS and enters an idle state. val specifies whether or not there is sharing with
the controller. (0: not shared; 1: shared.)

When the BIOS is subsequently put into operation by StartCARD(), the low-level interface functions that
begin with “ _card” can be used directly.

The Memory Card file system uses these interfaces internally, so InitCARD() needs to be executed before
_bu_init().

There is no effect on the controller.

See also
_bu_init()

CONFIDENTIAL Run-Time Library Reference

4-4 Memory Card Library Functions

StartCARD

Start Memory Card BIOS.
Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

void StartCARD(void)

Explanation
Changes the Memory Card BIOS initialized by InitCARD() to a run state.

Performs ChangeClearPAD(1) internally.

See also
INitCARD(), StopCARD(), _bu_init(), ChangeClearPAD() (see libapi)

Run-Time Library Reference CONFIDENTIAL

Memory Card Library Functions 4-5

StopCARD
Stop Memory Card BIOS.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
void StopCARD(void)

Explanation

Changes Memory Card BIOS to an idle state--the same state as that immediately after executing
INitCARD().

It also stops the controller. It is necessary to call StartPAD() to start the controller.

See also
INitCARD(), StartCARD(), _bu_init(), ChangeClearPAD() (see libapi)

CONFIDENTIAL Run-Time Library Reference

4-6 Memory Card Library Functions

_bu_init

Initialize Memory Card file system.
Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

void_bu_init(void)

Explanation

Initializes the Memory Card file system. This file system is not initialized automatically, so it is necessary to
call this function.

See also
INitCARD(), StartCARD(), StopCARD()

Run-Time Library Reference CONFIDENTIAL

Memory Card Library Functions 4-7

_card_auto

Set automatic format function.
Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

long _card_auto(

long val) Indicates automatic formatting

Explanation

When val is 0, the automatic format function is disabled; when val is 1, it is enabled.

This function should be used for testing purposes only.

Return value
Previously set automatic format value.

CONFIDENTIAL Run-Time Library Reference

4-8 Memory Card Library Functions

_card_chan

Get a Memory Card BIOS event.
Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

long _card_chan(void)

Explanation
Returns the device number of the Memory Card that just generated an event.

Return value
2-digit hex device number.

See also
card_status(), _card_wait()

Run-Time Library Reference CONFIDENTIAL

Memory Card Library Functions 4-9

_card_clear

Clear unconfirmed flags.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

long _card_clear(

long chan) Port number x 16 + Card number

Explanation

Performs a dummy write to the system management area of the card and clears the card’s unconfirmed
flags.

When calculating chan, “port number” is O for Port 1 and 1 for Port 2. “Card number” is zero when a
standard controller is connected, and may be in the range 0-3 if a Multi Tap is connected.

This function executes asynchronously, so it returns immediately. Processing completion is communicated
by an event. (See table below.) In order to use this command with multiple slots in a Multi Tap, you must
wait until processing has completed before sending another _card_clear() call.

Table 4-1: Events on completion of processing

Source Descriptor/Event Class Contents
HwCARD/EvSpIOE Ends process
HwCARD/EvSpTIMOUT Card not connected
HwCARD/EVSpNEW New card detected
HwCARD/EVSpERROR Error generated
HwCARD/EvSpUNKOWN Source unknown

Return value
1 if registration successful, otherwise 0.

See also
card_info()

CONFIDENTIAL Run-Time Library Reference

4-10 Memory Card Library Functions

_card_format
Format the Memory Card.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

long _card_format(

long chan) Port number x 16 + Card number

Explanation

Formats the Memory Card. When calculating chan, “port number” is 0 for Port 1 and 1 for Port 2. “Card
number” is zero when a standard controller is connected, and may be in the range 0-3 if a Multi Tap is
connected.

Does not enter critical section. Synchronous functions are blocked for approximately 144 Vsync.

Return value
1 if formatting is successful, otherwise O.

See also
_card_load()

Run-Time Library Reference CONFIDENTIAL

Memory Card Library Functions

_card_info

Get card status.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

long _card_info(

long chan) Port number x 16 + Card number
Explanation

Tests the connection of the Memory Card specified in chan.

When calculating chan, “port number” is O for Port 1 and 1 for Port 2. “Card number” is zero when a
standard controller is connected, and may be in the range 0-3 if a Multi Tap is connected.

This function executes asynchronously, so it returns immediately. Processing completion is communicated
by an event. (See table below.) In order to use this command with multiple slots in a Multi Tap, you must
wait until processing has completed before sending another _card_info() call.

Table 4-2: Posts an event on completion of processing

Source Descriptor/Event Class Description
SwCARD/EvSpIOE Connected
SwCARD/EvSpTIMOUT Not connected
SwCARD/EVSpNEW No writing after connection
SwCARD/EVSpERROR Generates an error

Do not use _new_card() to suppress EVSpNEW.

Return value
1 if registration successful, otherwise 0.

See also
_card_clear(), _card_status(), _new_card()

CONFIDENTIAL Run-Time Library Reference

4-12 Memory Card Library Functions

_card_load

Test logical format

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

long _card_load(

long chan) Port number x 16 + Card number
Explanation

Reads file management information for the card specified by chan in the file system in order to get
asynchronous access using the I/O management service.

When calculating chan, “port number” is O for Port 1 and 1 for Port 2. “Card number” is zero when a
standard controller is connected, and may be in the range 0-3 if a Multi Tap is connected.

_card_load() must be called at least once before you can use open() on a Memory Card file in O_NOWAIT
mode. It does not have to be called again unless a card is changed.

This function executes asynchronously, so it returns immediately. Processing completion is communicated
by an event. (See table below.) In order to use this command with multiple slots in a Multi Tap, you must
wait until processing has completed before sending another _card_load() call.

Table 4-3: Posts an event on completion of processing

Source Descriptor/ Event Class Contents
SwCARD/EvSpIOE Read completed
SwCARD/EvSpTIMOUT Not connected
SwCARD/EVSpNEW Uninitialized card
SwCARD/EVSpERROR Generates an error

Return value
1 if the read is successful, otherwise 0.

See also
format() (see libcd), card_info()

Run-Time Library Reference CONFIDENTIAL

Memory Card Library Functions 4-13

_card_read

Read one block from the Memory Card.
Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

long _card_read(

long chan, Port number x 16 + card number

long block, Target block number

long *buf) Pointer to 128 byte data buffer

Explanation

Reads 128 bytes of buffer data into buf from the target block number (block) of the Memory Card of the
specified channel (chan).

When calculating chan, “port number” is O for Port 1 and 1 for Port 2. “Card number” is zero when a
standard controller is connected, and may be in the range 0-3 if a Multi Tap is connected.

This function executes asynchronously so it returns immediately after completion. Actual processing
termination is communicated by an event. (See table below.) Multiplex processing to the same card slot
can’t be performed.

Table 4-4: Events on completion of processing

Source Descriptor / Event Class Contents
HwCARD/EvSpIOE Ends processing
HwCARD/EvSpTIMOUT Card not connected
HwCARD/EVSpNEW New card detected
HwCARD/EVSpERROR Error generated
HwCARD/EvSpUNKOWN Source unknown

This function exists within the low-level interface and is one of the special functions used for testing.

Return value
1 if successful processing registration, otherwise 0.

See also
_card_write(), open() (see libapi), read() (see libapi)

CONFIDENTIAL Run-Time Library Reference

4-14 Memory Card Library Functions

_card_status
Get Memory Card BIOS status.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

long _card_status(

long drv) Port number

Explanation

Gets the Memory Card BIOS status of each slot, drv. Specify drv as O for Port 1, 1 for Port 2.

This is a synchronous function.

Return value
If the Memory Card BIOS is in run state, it can return any of the following values.

Table 4-5
Value State
0x01 Idle processing
0x02 READ processing
0x04 WRITE processing
0x08 Connection test processing registration
Ox11 No registered processing (just prior to
EvSpTIMOUT generation)
0x21 No registered processing (just prior to
EvSpERROR generation)
See also

card_wait(), _card_chan(), _card_info()

Run-Time Library Reference CONFIDENTIAL

Memory Card Library Functions 4-15

_card_wait

Wait for Memory Card BIOS completion.
Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

long _card_wait(

long drv) Sets slot number

Explanation

Wait until registration processing completes for the drv slot. Specify drv as O for Port 1, 1 for Port 2.

Return value
Always 1.

See also
_card_status(), _card_chan()

CONFIDENTIAL Run-Time Library Reference

4-16 Memory Card Library Functions

_card_write

Write to one block of the Memory Card (for testing only)
Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

long _card_write(

long chan, Port number x 16 + card number

long block, Target block number

long *buf) Pointer to 128-byte data buffer

Explanation

Writes 128 bytes of buffer data pointed to by buf to the target block number (block) of the Memory Card of
the specified channel (chan).

When calculating chan, “port number” is O for Port 1 and 1 for Port 2. “Card number” is zero when a
standard controller is connected, and may be in the range 0-3 if a Multi Tap is connected.

This function executes asynchronously, so it returns immediately. Actual processing termination is
communicated by an event. (See table below.) Multiplex processing to the same card slot can’t be
performed; that is, multiple _card_write() calls to the same Multi Tap cannot be processed synchronously.

Table 4-6: Events on completion of processing

Source Descriptor/Event Class Contents
HwCARD/EvSpIOE Ends process
HwCARD/EvSpTIMOUT Card not connected
HwCARD/EVSpNEW New card detected
HwCARD/EVSpERROR Error generated
HwCARD/EvSpUNKOWN Source unknown

This is a low-level function that should be used for testing only. It bypasses the memory card file system;
therefore, in a released product, use the C file-handling routines such as write().

Return value
1 if registration successful, otherwise 0.

See also
_card_read(), open() (see libapi), write() (see libapi)

Run-Time Library Reference CONFIDENTIAL

Memory Card Library Functions 4-17

_new_card

Change settings of unconfirmed flag test.
Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax

void _new_card(void)

Explanation
Masks the generation of an EVSpNEW event immediately after _card_read() or _card_write().

Terminates immediately even though it is a synchronous function.

See also
_card_clear(), _card_read(), _card_write()

CONFIDENTIAL Run-Time Library Reference

4-18 Memory Card Library Functions

Run-Time Library Reference CONFIDENTIAL

Chapter 5: Extended Memory Card Library
Table of Contents

Functions
MemCardAccept 5-3
MemCardCallback 5-4
MemCardClose 5-5
MemCardCreateFile 5-6
MemCardDeleteFile 5-7
MemCardEnd 5-8
MemCardExist 5-9
MemCardFormat 5-10
MemCardGetDirentry 5-11
MemCardinit 5-12
MemCardOpen 5-13
MemCardReadData 5-14
MemCardReadFile 5-15
MemCardStart 5-16
MemCardStop 5-17
MemCardSync 5-18
MemCardUnformat 5-19
MemCardWriteData 5-20
MemCardWriteFile 5-21

CONFIDENTIAL Run-Time Library Reference

5-2

Run-Time Library Reference

CONFIDENTIAL

Extended Memory Card Library Functions 5-3

MemCardAccept
Check Memory Card status.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax

long MemCardAccept(

long chan) port number + card number
port number(port A: 0x00; port B: 0x10)
card number (normally 0)

Explanation

Tests connection with the Memory Card specified by chan. If the card is connected, additional information
is obtained. If the card is new, _card_clear() and _card_load() are executed, allowing the use of file access
functions.

MemCardAccept() must be executed before using file access functions such as MemCardOpen().
MemCardAccept() does not need to be called again as long as the card is not swapped.

The function is asynchronous and returns immediately. (Multiple instances can’t be registered.) Use
MemCardSync() or an exit callback to determine completion and get the result, which is one of the
following:

Table 5-1

Value Macro Status

0x00 McErrNone Connected

0x01 McErrCardNotExist Not connected

0x02 McErrCardinvalid Bad card

0x03 McErrNewCard New card (card was
replaced)

0x04 McErrNotFormat Not formatted

The maximum time required to perform this operation is 76 VSyncs. Approximately 4 VSyncs are needed if
a card is not present.

A new card is detected only once and returns McErrNewCard. Subsequent calls return McErrNone.

Return value
1 if registration successful, otherwise 0.

See also
MemCardOpen(), MemCardReadFile(), MemCardWriteFile(), MemCardExist()

CONFIDENTIAL Run-Time Library Reference

5-4 Extended Memory Card Library Functions

MemCardCallback

Define exit callback.
Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax

MemCB MemCardCallback(

MemCB func) pointer to callback function

Explanation

Sets the callback function (func) to be triggered when an asynchronous function completes. If func is O, no
callback is generated.

The following format is used for exit callback functions:

typedef void (*MemCB)(unsigned long cmds, unsigned long result)
cmds: the completed asynchronous function (see below)
result: the execution result from the asynchronous function

Allowed value for cmds:

Table 5-2
Value Macro Function
0x01 McFuncExist MemCardExist
0x02 McFuncAccept MemCardAccept
0x03 McFuncReadFile MemCardReadFile
0x04 McFuncWriteFile MemCardWriteFile
0x05 McFuncReadData MemCardReadData
0x06 McFuncWriteData MemCardWriteData

See the sections on the respective functions for details of the result value.

Return value
The address of the previously set callback.

See also

MemCardAccept(), MemCardExist(), MemCardReadFile(), MemCardWriteFile(), MemCardReadData(),
MemCardWriteData(), MemCardSync()

Run-Time Library Reference CONFIDENTIAL

Extended Memory Card Library Functions 5-5

MemCardClose

Close file.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
void MemCardClose(void)

Explanation

Closes the file that was opened with MemCardOpen(). It is an asynchronous function that exits
immediately.

See also
MemCardOpen()

CONFIDENTIAL Run-Time Library Reference

5-6 Extended Memory Card Library Functions

MemCardCreateFile

Create a new file in the Memory Card
Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax

long MemCardCreateFile(

long chan, port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

char *file, filename
long blocks) number of blocks
Explanation

Creates the specified file in the Memory Card. It is a synchronous function; blocking time is 1 - 4 VSyncs for
normal exit, 4 - 76 VSyncs otherwise. It doesn’t enter a critical section.

The block parameter is given in units of 8192 bytes.

Return value

Table 5-3
Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Card is not connected
0x02 McErrCardinvalid Communication error
generated
0x04 McErrNotFormat Not formatted
0x06 McErrAlreadyExist File already exists
0x07 McErrBlockFull Not enough available
blocks
-1 None A non-synchronous
function is active.
See also

MemCardOpen(), MemCardWriteFile(), MemCardDeleteFile()

Run-Time Library Reference CONFIDENTIAL

Extended Memory Card Library Functions

MemCardDeleteFile

Delete file from Memory Card.
Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 2/24/99

Syntax

long MemCardDeleteFile(

long chan, port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

char *file) filename

Explanation

Deletes the specified file from the Memory Card. It is a synchronous function; blocking time: 1 - 4 VSyncs
for normal exit. 4 - 76 VSyncs otherwise. Does not enter critical section.

Return value

Table 5-4

Value Macro Status

0x00 McErrNone Normal exit

0x01 McErrCardNotExist Card is not connected

0x02 McErrCardinvalid Communication error
generated (*1)

0x04 McErrNotFormat Not formatted

0x05 McErrFileNotExist File not found

-1 None A non-synchronous

function is active.
(*1: The same error code is also returned if the deleted file was an active PDA application. Because of the
PDA kernel locking mechanism, the active PDA application cannot be deleted.

See also
MemCardCreateFile()

CONFIDENTIAL Run-Time Library Reference

5-7

5-8 Extended Memory Card Library Functions

MemCardEnd

Terminate Memory Card system.
Library Header File Introduced Documentation Date
libmerd.lib libmecrd.h 4.0 12/14/98

Syntax

void MemCardEnd(void)

Explanation
Terminates the Memory Card system. It is a synchronous function.

MemCardStop() needs to be executed first if the system was activated from MemCardStart().

See also
MemCardinit(), MemCardStart(), MemCardStop()

Run-Time Library Reference CONFIDENTIAL

Extended Memory Card Library Functions 5-9

MemCardExist

Get connection status of card.
Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax

long MemCardExist(

long chan) port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

Explanation

Tests the connection status of the Memory Card specified by chan. MemCardExist() is faster than
MemCardAccept(), since it checks only the presence of the card. MemCardAccept() must be used for more
detailed information, such as whether the card is formatted. If cards are swapped, MemCardAccept() must
be executed before using file access functions such as MemCardOpen).

The function is asynchronous and exits immediately. Multiple instances of the function cannot be
registered. Use MemCardSync() or an exit callback to determine completion and obtain the result of the
operation, as shown below:

Table 5-5
Value Macro Status
0x00 McErrNone Connected
0x01 McErrCardNotExist Not connected
0ox02 McErrCardinvalid Bad card
0x03 McErrNewCard New card (card was
replaced)

The time required is approximately 4 VSyncs.

When a new card is detected (McErrNewCard), you must call MemCardAccept() to clear the new card
status, before performing any other operations.

Return value
1, if the command was successfully registered; O otherwise.

See also
MemCardAccept|()

CONFIDENTIAL Run-Time Library Reference

5-10 Extended Memory Card Library Functions

MemCardFormat

Format Memory Card.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax

long MemCardFormat(

long chan) port number + card number
port number (port A: 0x00, port B: 0x10)
card number (normally 0)

Explanation

Formats the specified Memory Card. Synchronous function. Blocking time: approx. 144 VSyncs. Does not
enter critical section.

Return value

Table 5-6
Value Macro Status
0x00 McErrNone Connected
0x01 McErrCardNotExist Not connected
0x02 McErrCardinvalid Communication error
-1 None A non-synchronous
function is active
See also
MemCardUnformat()

Run-Time Library Reference CONFIDENTIAL

Extended Memory Card Library Functions

MemCardGetDirentry
Get directory information from Memory Card.

Library Header File Introduced Documentation Date

libmcrd.lib libmcrd.h 4.0 2/24/99
Syntax
long MemCardGetDirentry(
long chan, port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

char *name, filename to be searched (wildcards can be used)

struct DIRENTRY *dir, pointer to structure to hold information about matching files

long *files, pointer to buffer to hold number of matching files

long ofs, offset for entry. Specifies the number of files to skip from the first file that
matches before saving to the buffer (0 - 14).

long max) maximum number of entries to store in the buffer

Explanation

Finds files matching the filename pattern name. Data for these files are stored in dir, and the total number of
matching files is returned in files. The buffer must be prepared by the user application.

Synchronous function. Blocking time: 1 - 2 VSyncs for normal exit. Otherwise, 4 - 76 VSyncs.

Wildcard characters can be used in the filename pattern: "?" for any single character; "*" for any number of
characters. Characters following * are ignored.

Return value

Table 5-7
Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Card is not connected
0ox02 McErrCardinvalid Bad card

-1 None A non-synchronous
function is active.

CONFIDENTIAL Run-Time Library Reference

5-12 Extended Memory Card Library Functions

MemcCardinit

Initialize Memory Card system.
Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax

void MemCardInit(

long val) Use of control routine in ROM (0: do not use, 1: use)

Explanation

Initializes the Memory Card system. If the system is subsequently activated with MemCardStart(), libmcrd
functions (those beginning with "MemCard") are available. MemCardInit() should be executed after
INitPAD(), InitGUN(), or InitTAPY).

val should be set to 0 when using libtap or libgun.

MemCardinit() requires 60 - 70 VSyncs to complete. It cannot be executed twice.

See also
MemCardEnd(), MemCardStart(), MemCardStop()

Run-Time Library Reference CONFIDENTIAL

Extended Memory Card Library Functions 5-13

MemCardOpen
Open file.
Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98
Syntax
long MemCardOpen(
long chan, port number + card number
port number (port A: 0x00, port B: 0x10)
card number (normally 0)
char *file, filename
long flag) specifies method with which to open
(read only: O_RDONLY, write only: O_WRONLY)
Explanation

Opens the specified Memory Card file with the method specified by flag. Once the file is open,
MemCardReadData() and MemCardWriteData() can be used.

Methods cannot be combined (O_RDONLYIO_WRONLY). Multiple files cannot be opened.

Synchronous function. Blocking time: Exits immediately for normal completion. Otherwise, 4 - 76 VSyncs.

Return value

Table 5-8
Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Card is not connected
0x02 McErrCardinvalid Bad card
0x04 McErrNotFormat Not formatted
0x05 McErrFileNotExist File not found
-1 None Either another file is already
open or a non-
synchronous function is
active in the background.
See also

MemCardReadData(), MemCardWriteData(), MemCardClose()

CONFIDENTIAL Run-Time Library Reference

5-14 Extended Memory Card Library Functions

MemCardReadData

Read data from Memory Card.
Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax

long MemCardReadData(

unsigned long *adrs, pointer to destination buffer in main memory

long offset, offset in bytes from which to read, where the start of the file is defined to

be O
long bytes) number of bytes to read (multiple of 128)

Explanation

Reads data from the Memory Card file previously opened in MemCardOpen() and stores it in the buffer

pointed to by adrs.

It is an asynchronous function and exits immediately. Multiple instances cannot be registered.

Use MemGCardSync() or an exit callback to determine completion and obtain the result of the operation.
(The time required is approximately 1 VSync overhead + approximately 130 VSyncs per block (8192 bytes).

bytes is specified in units of 128. If a number that is not a multiple of 128 is specified, the process is not

registered and the operation terminates with a return value of 0.

The function result can have the values shown below.

Table 5-9
Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Not connected
0x02 McErrCardinvalid Communication error
0x03 McErrNewCard New card (card swapped)

Return value

1 if operation was registered successfully. Otherwise, O.

See also
MemCardOpen(), MemCardSync()

Run-Time Library Reference

CONFIDENTIAL

Extended Memory Card Library Functions 5-15

MemCardReadFile

Read file from Memory Card.
Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax

long MemCardReadFile(

long chan, port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally O)

char *file, filename

unsigned long *adrs, pointer to destination buffer in main memory

long offset, offset in bytes from which to read, where the start of the file is defined to
be O

long bytes) number of bytes to read (multiple of 128)

Explanation

Reads data from the specified Memory Card file and stores it in the buffer pointed to by adrs. bytes is
specified in units of 128. If a number that is not a multiple of 128 is specified, the process is not registered
and the operation terminates with a return value of O.

This function is asynchronous and returns immediately. Multiple instances cannot be registered. Use
MemCardSync() or an exit callback to determine completion and obtain the result of the operation, as
shown below.

Table 5-10
Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Not connected
0x02 McErrCardinvalid Communication error
0x03 McErrNewCard New card (card swapped)
0x05 McErrFileNotExist File cannot be found

Required time: approximately 1 VSync overhead + approximately 130 VSyncs per block (8192 bytes).
MemCardOpen() and MemCardReadData() are executed within MemCardReadFile(). If MemCardOpen() is
executed on a file which is already open, an error is generated and the value O is returned.

Return value

1 if operation was registered successfully. If the file was already open, or another asynchronous function
was already registered, 0 is returned.

See also
MemCardOpen(), MemCardReadFile(), MemCardSync()

CONFIDENTIAL Run-Time Library Reference

5-16 Extended Memory Card Library Functions

MemCardStart
Start Memory Card system.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
void MemCardStart(void)

Explanation

Places the Memory Card system, previously initialized with MemCardinit() in an active state. Internally, eight
events such as HWCARD and SwCARD are opened.

Asynchronous Function. Exits immediately.

See also
MemCardinit(), MemCardStop()

Run-Time Library Reference CONFIDENTIAL

Extended Memory Card Library Functions 5-17

MemCardStop
Stop Memory Card system.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
void MemCardStop(void)

Explanation
Stops the Memory Card system activated by MemCardStart(). Various events are closed.

Asynchronous Function. Exits immediately.

See also
MemCardinit(), MemCardStart(), MemCardStop()

CONFIDENTIAL Run-Time Library Reference

5-18 Extended Memory Card Library Functions

MemCardSync
Wait for completion of an asynchronous function or check status.
Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98
Syntax
long MemCardSync(
long mode, 0O: wait for termination of asynchronous function
1: check current status and return immediately
long *cmds, pointer to the terminated asynchronous function
long *resuilt) pointer to execution results from the asynchronous function
Explanation

If mode is 0, this function waits for termination of an asynchronous function such as MemCardAccept() and
MemCardReadFile(). The execution time depends on the corresponding asynchronous function.

If mode is 1, it exits immediately and returns the status of the asynchronous function (see Return value).

cmds stores the operation code corresponding to the terminated asynchronous function:

Table 5-11
Value Macro Function
0x01 McFuncExist MemCardExist
0x02 McFuncAccept MemCardAccept
0x03 McFuncReadFile MemCardReadFile
0x04 McFuncWriteFile MemCardWriteFile
0x05 McFuncReadData MemCardReadData
0x06 McFuncWriteData MemCardWriteData

Return value

0: Still active

1. Terminated
-1: No registered process

See also

MemCardAccept(), MemCardExist(), MemCardReadFile(), MemCardWriteFile(), MemCardReadData(),
MemCardWriteData(), MemCardCallback()

Run-Time Library Reference CONFIDENTIAL

Extended Memory Card Library Functions

MemCardUnformat
Uninitialize a Memory Card (for debugging only).

Library Header File Introduced Documentation Date

libmcrd.lib libmcrd.h 4.3 12/14/98
Syntax
long MemCardUnformat(
long chan) port number + card number

port number (port A: 0x00, port B: 0x10)
card number (default O)
Explanation
Puts Memory Card in uninitialized (unformatted) state. Synchronous function.
MemCardUnformat() is a debugging function that can be used to create an unformatted card. This function

should only be used for testing Memory Card initialization during program debugging. It should not be used
in an actual title.

Return value

1: Completed successfully. 0: Error. -1: Could not be executed because of an asynchronous function
running in the background.

See also
MemCardFormat()

CONFIDENTIAL Run-Time Library Reference

5-19

5-20 Extended Memory Card Library Functions

MemCardWriteData

Write data to Memory Card.
Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 8/9/99

Syntax

long MemCardWriteData(

unsigned long *adrs, pointer to destination buffer in main memory

long offset, offset in bytes from which to write, where the start of the file is defined to

be 0

long byte) number of bytes to write (multiple of 128)

Explanation

Writes data from the buffer pointed to by adrs to the Memory Card file previously opened with

MemCardOpen().

MemCardWriteData() is asynchronous and exits immediately. Multiple instances cannot be registered.
Required time: Approximately 1 VSync overhead + 130 VSyncs per block (8192 bytes)

Use MemGCardSync() or an exit callback to determine completion and obtain the result of the operation.

bytes is specified in units of 128. If a number that is not a multiple of 128 is specified, the process is not
registered and the operation terminates with a return value of 0.

The function result can have the values shown below.

Table 5-12
Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Not connected
0x02 McErrCardinvalid Communication error
0x03 McErrNewCard New card (card swapped)

Return value
1 if the operation was registered successfully, O otherwise.

See also
MemCardOpen(), MemCardSync()

Run-Time Library Reference CONFIDENTIAL

Extended Memory Card Library Functions 5-21

MemCardWriteFile
Write file to Memory Card.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 8/9/99

Syntax

long MemCardWriteFile(

long chan, port number + card number
port number (port A: 0x00, port B: 0x10)
card number (normally 0)

char *file, filename

unsigned long *adrs, pointer to destination buffer in main memory

long offset, offset in bytes from which to write, where the start of the file is defined to
be O

long bytes) number of bytes to write (multiple of 128)

Explanation

Writes data from the buffer pointed to by adrs to the specified Memory Card. If the file is new, it must be
created beforehand with MemCardCreateFile(). bytes is specified in units of 128. If a number not a multiple
of 128 is specified, the process is not registered and the operation terminates with a return value of O.

MemCardWriteFile() is an asynchronous function and returns immediately. Multiple instances cannot be
registered. Use MemCardSync() or an exit callback to determine completion and obtain the result of the
operation, as shown below:

The function result can have the values shown below.

Table 5-13
Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Not connected
0x02 McErrCardinvalid Communication error
0x03 McErrNewCard New card (card swapped)
0x05 McErrFileNotExist File not found

Required time: Approximately 1 VSync overhead + 130 VSyncs per block (8192 bytes).
MemCardOpen() and MemCardWriteData() are executed within MemCardWriteFile(). If MemCardOpen() is
executed on a file which is already open, an error is generated and the value O is returned.

Return value

1 if operation was registered successfully. If the file was already open, or another asynchronous function
was already registered, 0 is returned.

See also
MemCardCreateFile(), MemCardSync()

CONFIDENTIAL Run-Time Library Reference

5-22 Extended Memory Card Library Functions

Run-Time Library Reference CONFIDENTIAL

Chapter 6: Data Compression Library
Table of Contents

Structures
DECDCTENV 6-3
ENCSPUENV 6-4
Functions
DecDCTBufSize 6-5
DecDCTGetEnv 6-6
DecDCTin 6-7
DecDCTinCallback 6-8
DecDCTinSync 6-9
DecDCTout 6-10
DecDCToutCallback 6-11
DecDCToutSync 6-12
DecDCTPutEnv 6-13
DecDCTReset 6-14
DecDCTvlc 6-15
DecDCTvlc2 6-16
DecDCTvicBuild 6-17
DecDCTvlcSize 6-18
DecDCTvlcSize2 6-19
EncSPU 6-20
EncSPU2 6-22

CONFIDENTIAL Run-Time Library Reference

6-2

Run-Time Library Reference

CONFIDENTIAL

Data Compresson Library Structures 6-3

DECDCTENV
Quantization tables used during MDEC decoding process.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.5 12/14/98
Structure
typedef struct {
u_char iqg_y[64]; Brightness component quantization table
u_char ig_c[64]; Chrominance component quantization table
short dct[64]; System reserved
} DECDCTENYV;
Explanation

This structure contains the tables used during the reverse-quantization step of the MDEC decoding
process. The default values used by the system are:

iq_y
o 2 16 19 22 26 27 29 34 O
0O 16 16 22 24 27 29 34 37 O
o 19 22 26 27 29 34 34 38 O
o 22 22 26 27 29 34 37 40 O X
1/ 16
o 22 26 27 29 32 35 40 48 O
O 26 27 29 32 35 40 48 58 O
0O 26 27 29 34 38 46 56 69 O
o 27 29 35 38 46 56 69 83 O
ig_c
o 2 16 19 22 26 27 29 34 O
O 16 16 22 24 27 29 34 37 O
o 19 22 26 27 29 34 34 38 O
o 22 22 26 27 29 34 37 40 O X
1/ 16
o 22 26 27 29 32 35 40 48 O
0O 26 27 29 32 35 40 48 58 O
O 26 27 29 34 38 46 56 69 O
o 27 29 35 38 46 56 69 83 O

The values in the iq_y and ig_c tables are sorted in a diagonal zig-zag scanning order.

CONFIDENTIAL Run-Time Library Reference

6-4 Data Compresson Library Structures

ENCSPUENV
SPU encode environment attribute structure.
Library Header File Introduced Documentation Date
libpress. ib libpress.h 3.6 8/27/99
Structure
typedef struct {
short *src; 16-bit PCM data address
short *dest; PlayStation® original waveform data
short *work; Work area when encode processing
long size; 16-bit PCM data size(in bytes)
long loop_start; PCM data loop start point(in bytes)
char loop; Loop waveform generation specification

ENCSPU_ENCODE_LOOP: Generate loop waveform data
ENCSPU_ENCODE_NO_LOOP: Generate non-loop waveform data

char byte_swap; PCM data endian specification
ENCSPU_ENCODE_ENDIAN_BIG: 16-bit big endian
ENCSPU_ENCODE_ENDIAN_LITTLE: 16-bit little endian

char proceed; Whole/Divided encoding specification
ENCSPU_ENCODE_WHOLE: Whole encoding
ENCSPU_ENCODE_START: Start divided encoding
ENCSPU_ENCODE_CONTINUE: Continue divided encoding
ENCSPU_ENCODE_END: End divided encoding
Encoding quality. Only effective for EncSPUZ2().
Specify either ENCSPU_ENCODE_MIDDLE_QUALITY or
ENCSPU_ENCODE_HIGH_QUALITY.

char pad4; System reserved

} ENCSPUENV;

Explanation
This structure is used to specify the SPU encode environment attributes for EncSPU() function.

When ENCSPU_ENCODE_NO_LOOP is specified for loop, loop_start is ignored.

See also
EncSPU()

Run-Time Library Reference CONFIDENTIAL

Data Compression Library Functions 6-5

DecDCTBufSize

Get size of run-level DCT data.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.X 12/14/98

Syntax

long DecDCTBufSize(

u_long *bs) Pointer to bitstream

Explanation

Returns the uncompressed length of the data contained in the Huffman-encoded bitstream pointed to by
the bs parameter. It does not perform the actual decoding.

When using DecDCTvlc()/DecDCTvic2() to perform decoding, you must reserve a 1-word header buffer to
add to the size obtained by this function.

Return value
Length of uncompressed data in long words (i.e. returns 1000 for a 4000-byte length).

See also
DecDCTvlc(), DecDCTvIc2()

CONFIDENTIAL Run-Time Library Reference

6-6 Data Compression Library Functions

DecDCTGetEnv

Get current quantization tables and environment data used during MDEC image decoding.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.5 12/14/98

Syntax

DECDCTENYV *DecDCTGetEnv(

DECDCTENYV *env) Pointer to decoding environment

Explanation

Returns the current decoding environment to env.

Return value
Address of env.

See also
DecDCTPUtEnv()

Run-Time Library Reference CONFIDENTIAL

Data Compression Library Functions

DecDCTin

Begin decoding RLE-encoded MDEC image data.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.X 12/14/98

Syntax

void DecDCTin(
unsigned long *runlevel, Pointer to input runlevel
long mode) Decode mode

Explanation
Begins decoding the RLE-encoded MDEC image data at the address specified by runlevel. A maximum of
128k may be decoded at a time. The resulting image data is retrieved by the DecDCTout() function.

Bit O of the mode parameter controls the depth of the output pixels: 0 = 16-bit direct color; 1 = 24-bit
direct color. In 16-bit mode, bit 1 of mode is the STP bit that determines bit 15 of the pixel.

The image data produced is raw pixel data without any header information. The width and height of the
image is not maintained; the application or a higher level structure (such as the STR format) must maintain
such information.

Data decoded from a single DecDCTin() call may be read using multiple DecDCTout() calls, or the data
created by multiple DecDCTin() calls may be read using a single DecDCTout() call.

DecDCTin() is non-blocking. To detect when execution of the primitive list is complete, use DecDCTinSync()
or install a callback routine with DecDCTinCallback(). If DecDCTin() is called before a previous DecDCTin()
operation has finished, it is blocked until the previous operation is complete.

See also
DecDCTout(), DecDCTinSync(), DecDCTinCallback()

CONFIDENTIAL Run-Time Library Reference

6-7

6-8 Data Compression Library Functions

DecDCTinCallback

Install a callback routine to be called at termination of MDEC transmission.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.X 12/14/98

Syntax

long DecDCTinCallback(

void (*func)()) Pointer to callback function

Explanation

Installs the user-defined callback routine specified by func. This routine is called when the data transmission
initiated by a DecDCTin() call has been completed. If func is 0, any previous callback routine is disabled.

Although the callback is called during an interrupt, it is not an interrupt handler; it should be written as a
normal subroutine that is called by the main interrupt handler. Inside the callback, subsequent termination
interrupts are masked; therefore, the callback should return as soon as possible.

Return value
A pointer to a previously set callback function.

See also
DecDCTin()

Run-Time Library Reference CONFIDENTIAL

Data Compression Library Functions 6-9

DecDCTinSync

Detect DecDCTin() termination.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.X 12/14/98

Syntax

long DecDCTinSync(

long mode) 0: Blocks until termination; 1: Performs only status notification

Explanation

Detects termination of DecDCTin().

Synchronization with DecDCTinSync()must be performed after reading the appropriate amount of decode
data with DecDCTout(). When calling this function without using DecDCTout() after DecDCTin(), a timeout
occurs and MDEC is reset.

Return value

Image processing subsystem status: 1 if transmission is in process and O if transmission is not being
performed.

See also
DecDCTin(), DecDCTout()

CONFIDENTIAL Run-Time Library Reference

6-10 Data Compression Library Functions

DecDCTout

Receive decoded data from the image processing subsystem.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.X 12/14/98

Syntax

void DecDCTout(

unsigned long *cell, Pointer to decoded image data

long size) Received data size (long words)

Explanation

The RLE-encoded MDEC image data previously specified in a DecDCTin() call is decoded and stored in the
buffer specified by the cell parameter. The amount of data is specified in long words by size (e.g. size=1000
to transfer 4000 bytes of data). Multiple calls to DecDCTout() may be made to retrieve image data.

You must specify a size value that is the same as or smaller than the available decoded data. If there is
more data available than is read by one DecDCTout() call, additional calls must be made to avoid MDEC
transmission deadlocks.

The decoded image is output one 16 x 16 macroblock at a time. size must be a multiple of the total
macroblock size for the current decoding mode. If decoding to 16-bit, a macroblock is 128 words. If
decoding to 24-bit, the macroblock length is 192 words.

DecDCTout() is non-blocking. To detect when execution is complete, use DecDCToutSync() or install a
callback routine with DecDCToutCallback(). If a DecDCTout() call is executed before a previous one has
finished, the transmission is blocked until the previous operation is complete.

See also
DecDCTin(), DecDCToutSync(), DecDCToutCallback()

Run-Time Library Reference CONFIDENTIAL

Data Compression Library Functions 6-11

DecDCToutCallback

Install a callback routine to be called at termination of MDEC transmission.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.X 12/14/98

Syntax

long DecDCToutCallback(

long (*func)()) Pointer to callback function address

Explanation

Installs the user-defined callback routine specified by func. This routine is called when the data transmission
initiated by a DecDCTout() call has been completed. If func is 0, any previous callback routine is disabled.

Although the specified function is called during an interrupt, it is not an interrupt handler; it should be
written as a normal subroutine that is called by the main interrupt handler. Inside the callback, subsequent
transmission termination interrupts are masked; therefore, the callback should return as soon as possible.

Return value
A pointer to the previously set callback function.

See also
DecDCTout()

CONFIDENTIAL Run-Time Library Reference

6-12 Data Compression Library Functions

DecDCToutSync

Detect termination of DecDCTout().
Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.X 12/14/98

Syntax

long DecDCToutSync(

long mode) 0: blocks until termination; 1: performs only status notification

Explanation

Detects termination of DecDCTout().

Return value
Image processing subsystem status: 1 if reception is in progress and 0O if reception is not being performed.

See also
DecDCTout()

Run-Time Library Reference CONFIDENTIAL

Data Compression Library Functions 6-13

DecDCTPutEnv

Set image-processing-subsystem environment.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.5 12/14/98

Syntax

DECDCTENYV *DecDCTPutEnv(

DECDCTENYV *env) Pointer to decoding environment

Explanation

Sets the quantization tables and environment data used during the reverse-quantization step of the MDEC
decoding process.

Return value
Address of env.

See also
DecDCTGetEnv()

CONFIDENTIAL Run-Time Library Reference

6-14 Data Compression Library Functions

DecDCTReset

Initialize image processing subsystem.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.X 12/14/98

Syntax

void DecDCTReset(

long mode) 0O: Initializes all internal states

1: Discontinues only current decoding; does not affect internal states

Explanation
Resets the image processing subsystem.

Processing time is longer for mode 0 than for mode 1 because internal tables are initialized.

Run-Time Library Reference CONFIDENTIAL

Data Compression Library Functions

DecDCTvic

Decode Huffman-compressed MDEC image data.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.X 12/14/98

Syntax

int DecDCTvlc(

u_long "bs, Input bitstream

u_long “buf) QOutput runlevel

Explanation

Builds the run-level intermediate format in buf by decoding the bitstream bs. If runlevel data exceeds the
value specified in DecDCTvIcSize(), DecDCTvIc() is interrupted and returns control to the application.

The interrupted VLC decode can be restarted by executing DecDCTvic (0,0).

With buf, the 1 word area added to the header buffer in DecDCTBuUfSize() must be reserved in advance.

This is a blocking function.

This function is only the first stage of decoding an MDEC image. The Huffman-encoded bitstream must
always be decoded using DecDCTvic() before DecDCTin() is executed.
A partial result run level cannot be provided as DecDCTin() input.

Return value

0 Decoding for all bit stream is successfully
completed.

1 Returned with some bit stream left non-
decoded.

-1 Decode failed.

See also

DecDCTvlc2(), DecDCTin(), DecDCTBufSize(), DecDCTvIcSize()

CONFIDENTIAL Run-Time Library Reference

6-15

6-16 Data Compression Library Functions

DecDCTvlc2

Decode VLC.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.7 12/14/98

Syntax

int DecDCTvlc2(

u_long "bs, Input bit stream

u_long “buf, Output run level

DECDCTTAB fable) VLC table

Explanation

Builds the run-level intermediate format in buf by decoding the bitstream bs using the table. When the run
level data exceeds the value specified in DecDCTvicSize2(), DecDCTvIc2() is suspended and control is
returned to the application. The suspended VLC decoding process can be restarted by executing
DecDCTvic2(0, 0, table). With buf, the 1-word area added to the header buffer in DecDCTBuUfSize() must be
reserved in advance.

This is a blocking function. This function is only the first stage of decoding an MDEC image. The Huffman-
encoded bitstream must always be decoded using DecDCTvic() before DecDCTin() is executed.

A partial result run level cannot be provided as DecDCTin() input.

The VLC table should be decoded in advance using DecDCTBuild().

Return value

0 Decoding for all bit stream is successfully
completed.

1 Returned with some bit stream left non-
decoded.

-1 Decode failed.

See also

DecDCTvicSize2(), DecDCTin(), DecDCTvIcBuild(), DecDCTBuUfSize()

Run-Time Library Reference CONFIDENTIAL

Data Compression Library Functions 6-17

DecDCTvlcBuild
Build the VLC table.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.7 12/14/98

Syntax

void DecDCTvicBuild(

u_short “table) VLC Buffer
Explanation

Builds the VLC table that will be used for DecDCTvIc2(). The size of the VLC table to be built can be
obtained using sizeof (DECDCTTAB). See libpress.h for the definition of DECDCTTAB.

The VLC table is held in a compressed (4KB) format and only when a movie is playing is it released to the
work area and used in its decompressed form (64 KB).

See also
DecDCTvic2()

CONFIDENTIAL Run-Time Library Reference

6-18 Data Compression Library Functions

DecDCTvlicSize

Set maximum amount of data returned by a single call to DecDCTvIc().
Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.2 12/14/98

Syntax

int DecDCTvlcSize(

int size) Maximum value of a decoded runlevel (long word)

Explanation

Sets the maximum number of long words that DecDCTvlc() can return. Subsequent calls to DecDCTvic()
halt after decoding size long words. If size is zero, DecDCTvlc() decodes the entire bitstream regardless of
length.

This allows your program to make multiple calls to DecDCTvic() to decode a bitstream in chunks using a
smaller buffer size.

This is a blocking function. A bitstream must be converted to run-levels by DecDCTvic() before executing
DecDCTin().

Return value
Previously set buffer size.

Example:

/* Decoding the first VLC SIZE word in VLC */
DecDCTvl cSi ze (VLC_ Sl ZE);
i svlicLeft = DecDCTvlc (next, dec.vlchbuf[dec.vlcid]);
/* Waiting for data to be conpleted */
do {
/* Decoding the renmaining VLC SIZE words in VLC */
if (isvlicLeft) {
isvlcLeft = DecDCTvlc (0, 0);
FntPrint ("%, ", VSync (1));
}
/* Application code is here */
} while (isvlicLeft || isEndOFlane == 0);
i SEndCF Fl ame = 0;

See also
DecDCTvlc(), DecDCTin()

Run-Time Library Reference CONFIDENTIAL

Data Compression Library Functions 6-19

DecDCTvlcSize2

Set maximum size of single VLC decoding process.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.7 12/14/98

Syntax

int DecDCTvlcSize2(

int size) Maximum value of a decoded runlevel (long word)

Explanation

Sets the maximum size of bitstream that can be decoded per decoding process. DecDCTvIc2() suspends
the decoding process when decoding the first block after the number of words specified by size. If size is O
(the default), the decoding process is not suspended.

Since this is a blocking function, the bit stream must be converted to a run level by DecDCTvlc2() before
executing DecDCTin().

Return value
Maximum run level set immediate before.

See also
DecDCTvic2(), DecDCTin()

CONFIDENTIAL Run-Time Library Reference

6-20 Data Compression Library Functions

EncSPU

Encode 16-bit PCM data into PlayStation waveform format.
Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.6 12/14/98

Syntax

long EncSPU(

ENCSPUENYV *es_env) SPU encode environment attribute structure

Explanation

Encodes the 16-bit straight PCM data specified by es_env.src into PlayStation waveform data (VAG,
without header information) and returns the encoded data in es_env.dest.

16-bit straight PCM data size in es_env.size is specified in byte units. When creating looping waveforms,
specify es_env.loop as ENCSPU_ENCODE_LOOP and specify es_env.loop_start as the es_env.src internal
PCM data loop start point in byte units.

If es_env.loop_start is not a multiple of 56 (28 samples), the loop start point is set to the next lower multiple
of 56. If it is not looping waveform, specify es_env.loop as ENCSPU_ENCODE_NO_LOOP.

To ensure proper compression of different PCM endian formats, specify es_env.byte_swap as
ENCSPU_ENCODE_ENDIAN_BIG (16-bit big endian) or ENCSPU_ENCODE_ENDIAN_LITTLE (16-bit little
endian).

Whole/Divided encoding specifications are performed by specifying an attribute to es_env.proceed:

es_env.proceed Encoding Specifications
ENCSPU_ENCODE_WHOLE Whole encoding
ENCSPU_ENCODE_START Start divided encoding

ENCSPU_ENCODE_CONTINUE Continue divided encoding

ENCSPU_ENCODE_END End divided encoding

When es_env.proceed is set to something other than ENCSPU_ENCODE_WHOLE, the area is divided, in
other words, the following encoding is performed only in the area specified from es_env.src to es_env.size:

* Encoding by ENCSPU_ENCODE_START of the area including the start block
» Continued encoding by ENCSPU_ENCODE_CONTINUE of the intermediate area

* Encoding by ENCSPU_ENCODE_END of the section including the end block

If es_env.size is not a multiple of 56 (28 samples), the data is padded with zeroes until it is. This could
cause the generated waveform to be discontinuous; to maintain continuity, perform a divided encode on
the data with es_env.size equal to a multiple of 56.

If es_env.proceed is set to ENCSPU_ENCODE_WHOLE, the waveform is padded with zeroes to make
es_env.size a multiple of 56, and waveform encoding is performed all at once.

To use the scratchpad as the workspace, specify es_env.work as the scratchpad address; use 168 bytes
from the specified address. If es_env.work is set to NULL, the automatic variables are used internally.

When loop is specified as ENCSPU_ENCODE_NO_LOOP, loop_start will be ignored.

Run-Time Library Reference CONFIDENTIAL

Data Compression Library Functions 6-21

Return value
The data size of the encoded waveform (VAG).

ENC_ENCODE_ERROR is returned when an encoding error occurs.

Notes
Be aware that processing speed is faster with EncSPu than EncSPU2, but sound quality is poorer.

CONFIDENTIAL Run-Time Library Reference

6-22 Data Compression Library Functions

EncSPU2

Encode 16-bit PCM data into PlayStation waveform format (EncSPU2 high quality sound version)
Library Header File Introduced Documentation Date
libpress.lib libpress.h 4.6 8/27/99

Syntax

long EncSPU2(

ENCSPUENYV *es_env) SPU encode environment attribute structure

Explanation

Encodes the 16-bit straight PCM data specified by es_env.src into PlayStation waveform data (VAG,
without header information) and returns the encoded data in es_env.dest.

16-bit straight PCM data size in es_env.size is specified in byte units. When creating looping waveforms,
specify es_env.loop as ENCSPU_ENCODE_LOOP and specify es_env.loop_start as the es_env.src internal
PCM data loop start point in byte units.

If es_env.loop_start is not a multiple of 56 (28 samples), the loop start point is set to the next lower multiple
of 56. If it is not looping waveform, specify es_env.loop as ENCSPU_ENCODE_NO_LOOP.

To ensure proper compression of different PCM endian formats, specify es_env.byte_swap as
ENCSPU_ENCODE_ENDIAN_BIG (16-bit big endian) or ENCSPU_ENCODE_ENDIAN_LITTLE (16-bit little
endian).

Whole/Divided encoding specifications are performed by specifiying an attribute to es_env.proceed:

es_env.proceed Encoding Specifications
ENCSPU_ENCODE_WHOLE Whole encoding
ENCSPU_ENCODE_START Start divided encoding

ENCSPU_ENCODE_CONTINUE Continue divided encoding

ENCSPU_ENCODE_END End divided encoding

When es_env.proceed is set to something other than ENCSPU_ENCODE_WHOLE, the area is divided, in
other words, the following encoding is performed only in the area specified from es_env.src to es_env.size:

* Encoding by ENCSPU_ENCODE_START of the area including the start block

» Continued encoding by ENCSPU_ENCODE_CONTINUE of the intermediate area

* Encoding by ENCSPU_ENCODE_END of the section including the end block

If es_env.size is not a multiple of 56 (28 samples), the data is padded with zeroes until it is. This could

cause the generated waveform to be discontinuous; to maintain continuity, perform a divided encode on
the data with es_env.size equal to a multiple of 56.

If es_env.proceed is set to ENCSPU_ENCODE_WHOLE, the waveform is padded with zeroes to make
es_env.size a multiple of 56, and waveform encoding is performed all at once.

To use the scratchpad as the workspace, specify es_env.work as the scratchpad address; use 168 bytes
from the specified address. If es_env.work is set to NULL, the automatic variables are used internally.

However, when es_env_quality is set to ENCSPU_ENCODE_HIGH_QUALITY, only NULL can be specified.
With regard to quality and speed, when es_env_quality is set to ENCSPU_ENCODE_MIDDLE_QUALITY,
encoding is performed with an emphasis on speed rather than quality. When es_env_gquality is set to
ENCSPU_ENCODE_HIGH_QUALITY, though, the emphasis is placed on quality rather than speed.

Run-Time Library Reference CONFIDENTIAL

Data Compression Library Functions 6-23

When loop is specified as ENCSPU_ENCODE_NO_LOOP, loop_start will be ignored.

Return value
The data size of the encoded waveform (VAG).

ENC_ENCODE_ERROCR is returned when an encoding error occurs.

Notes
Be aware that sound quality is better with EncSPU2 than EncSPU, but processing is slower.

CONFIDENTIAL Run-Time Library Reference

Chapter 7: Basic Graphics Library
Table of Contents

Structures
DISPENV 7-5
DRAWENV 7-6
DR_AREA 7-7
DR_ENV 7-8
DR_LOAD 7-9
DR_MODE 7-10
DR_MOVE 7-11
DR_OFFSET 7-12
DR_STP 7-13
DR_TPAGE 7-14
DR_TWIN 7-15
LINE_F2, LINE_F3, LINE_F4 7-16
LINE_G2, LINE_G3, LINE_G4 7-17
POLY_F3, POLY_F4 7-19
POLY_FT3, POLY_FT4 7-20
POLY_G3, POLY_G4 7-22
POLY_GTS, POLY_GT4 7-23
RECT 7-25
RECT32 7-26
SPRT 7-27
SPRT_8, SPRT_16 7-28
TILE 7-29
TILE_1, TILE_8, TILE_16 7-30
TIM_IMAGE 7-31
TMD_PRIM 7-32
Functions
AddPrim, addPrim 7-33
AddPrims, addPrims 7-34
BreakDraw 7-35
CatPrim, catPrim 7-36
CheckPrim 7-37
Clearlmage 7-38
Clearlmage? 7-39
ClearOTag 7-40
ClearOTagR 7-41
ContinueDraw 7-42
DrawOTag 7-43
DrawQTag?2 7-44
DrawOTagEnv 7-45
DrawQOTaglO 7-46
DrawPrim 7-47
DrawSync 7-48
DrawSyncCallback 7-49
DumpClut, dumpClut 7-50
DumpDispEnv 7-51
DumpDrawEnv 7-52
DumpOTag 7-53

Run-Time Library Reference

DumpTPage, dumpTPage 7-54

FntFlush 7-55
FntLoad 7-56
FntOpen 7-57
FntPrint 7-58
GetClut, getClut 7-59
GetDispEnv 7-60
GetDrawArea 7-61
GetDrawEnv 7-62
GetDrawEnv2 7-63
GetDrawMode 7-64
GetDrawOffset 7-65
GetGraphDebug 7-66
GetODE 7-67
GetTexWindow 7-68
GetTimSize 7-69
GetTPage, getTPage 7-70
IsEndPrim, isendprim 7-71
IsldleGPU 7-72
KanjiFntClose 7-73
KanijiFntFlush 7-74
KanjiFntOpen 7-75
KanjiFntPrint 7-76
Krom2Tim 7-77
LoadClut 7-78
LoadClut2 7-79
Loadlmage 7-80
Loadimage? 7-81
LoadTPage 7-82
MargePrim 7-83
Movelmage 7-84
Movelmage?2 7-85
NextPrim, nextPrim 7-86
OpenTIM 7-87
OpenTMD 7-88
PutDispEnv 7-89
PutDrawEnv 7-90
ReadTIM 7-91
ReadTMD 7-92
ResetGraph 7-93
SetDefDispEnv 7-94
SetDefDrawEnv 7-95
SetDispMask 7-96
SetDrawArea 7-97
SetDrawEnv 7-98
SetDrawlLoad 7-99
SetDrawMode, setDrawMode 7-100
SetDrawMove 7-101
SetDrawOffset 7-102
SetDrawStp 7-103
SetDrawTPage, setDrawTPage 7-104
SetDumpFnt 7-105
SetGraphDebug 7-106

Run-Time Library Reference

SetLineF2, SetLineF3, SetlLineF4; setlLineF2, setLineF3, setLineF4; SetLineG2, SetLineG3,

SetlLineG4; setLineG2, setLineG3, setLineG4 7-107
SetPolyF3, SetPolyF4; setPolyF3, setPolyF4; SetPolyG3, SetPolyG4; setPolyG3, setPolyG4;

SetPolyGT3, SetPolyGT4; setPolyGT3, setPolyGT4 7-108
SetSemiTrans, setSemiTrans 7-109
SetShadeTex, setShadeTex 7-110
SetSprt, SetSprt8, SetSprt16; setSprt, setSprt8, setSprt16 7-111
SetTexWindow 7-112
SetTile, SetTile1, SetTile8, SetTile16; setTile, setTilel, setTile8, setTile16 7-113
Storelmage 7-114
Storelmage? 7-115
TermPrim, termPrim 7-116
VSync 7-117
VSyncCallback 7-118

Macros

addVector 7-119
applyVector 7-120
copyVector 7-121
dumpMatrix 7-122
dumpRECT 7-123
dumpVector 7-124
dump... 7-125
setClut 7-126
setRECT 7-127
setRGBO, setRGB1, setRGB2, setRGB3 7-128
setTPage 7-129
setUV0, setUV3, setUV4 7-130
setUVWH 7-131
setVector 7-132
setWH 7-133
setXY0, setXY2, setXY3, setXY4 7-134
setXYWH 7-135

Run-Time Library Reference

7-4

Run-Time Library Reference

Basic Graphics Library Structures 7-5

Structures
DISPENV
Display environment.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure
struct DISPENV {
RECT disp; Display area within frame buffer. Width: 256, 320, 384, 512, or 640. Height:
240 or 480.
RECT screen; Output screen display area. It is calculated without regard to the value of

u_char jsinter;

u_char isrgb24;

u_char pad0, padi;
b

Explanation

disp, using the standard monitor screen upper left-hand point (O, 0) and
lower right-hand point (256, 240).

Interlace mode flag. 0: non-interlace; 1: interlace

24-pbit mode flag. 0: 16-bit mode; 1: 24-bit mode

Reserved by system

Specifies display parameters for screen display mode, frame buffer display value, and so on.

See also

DumpDispEnv(), GetDispEnv(), PutDispEnv(), SetDefDispEnv()

Run-Time Library Reference

7-6 Basic Graphics Library Structures

DRAWENV
Drawing environment.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.X 12/14/98
Structure
struct DRAWENYV {
RECT clip; Drawing area. Drawing is restricted to the area specified by clip. It must be
within the area area (0, 0) - (1023, 511).
short ofs[2]; The offsets ofs[0] and ofs[1] are added to the X and Y values, respectively, of

all primitives before drawing. Note: Addresses after adding offsets are
wrapped around at (-1024, -1024) - (1023, 1023).

RECT tw; Texture window. Specifies a rectangle inside the texture page, to be used
for drawing textures.

u_short tpage; Initial value of texture page

u_char diad; Dithering processing flag. O: off; 1: on

u_char dfe; 0: drawing to display area is blocked
1: drawing to display area is permitted

u_char jsbg, 0: Does not clear drawing area when drawing environment is set.

1: Paints entire clip area with brightness values (0, g0, b0) when drawing
environment is set.

u_char r0, g0, bO; Background color. Valid only when isbg is 1.
DR_ENV ar_env, System reserved

5

Explanation

Sets basic drawing parameters, such as drawing offset and drawing clip area.

The GPU uses 8 bits for R, G, B internally; when writing to the frame buffer, each value is reduced to 5 bits.
When dtd is ON, a 4x4 dither matrix is used as follows:

i =8 bit brightness value + 1/2 * D - 4
D = Dither matrix [X%l] [Y%]

Table 7-1: 4x4 Dither Matrix

0 8 2 10
12 4 14 6
3 11 1 9
15 7 13 5

5 bit brightness value = 1 >> 3

The values which may be specified for the texture window are restricted to the following combinations:

Table 7-2
tw.w, tw.x
tw.w 0 (=256) 8 16 32 64 128
tw.x 0 Multiple of ~ Multiple of Multiple of Multiple of Multiple of
8 16 32 64 128
tw.h, tw.y
tw.h 0 (=256) 8 16 32 64 128
tw.y 0 Multiple of Multiple of Multiple of Multiple of Multiple of
8 16 32 64 128
See also

DrawOTagEnv(), DumpDrawEnv(), GetDrawEnv(), PutDrawEnv(), SetDefDrawEnv(), SetDrawEnv()

Run-Time Library Reference

Basic Graphics Library Structures 7-7

DR_AREA

Drawing area change primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Structure
struct DR_AREA {
u_long *tag; Pointer to the next primitive in primitive list
u_long code[2]; New drawing area information specified by SetDrawArea()
b
Explanation

Modifies the drawing area of the current drawing environment while a primitive list is being drawn. Use
SetDrawArea() to set the contents of this primitive.

See also
GetDrawArea(), SetDrawArea()

Run-Time Library Reference

7-8 Basic Graphics Library Structures

DR_ENV

Drawing environment modification primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct DR_ENV {
u_long “tag; Pointer to the next primitive in primitive list
u_long codef15]; New drawing environment information specified by SetDrawEnv()
5
Explanation
Changes the drawing environment (DRAWENYV) while a primitive list is being drawn. Use SetDrawEnv() to
specify the new DRAWENV parameters.

This primitive affects only the drawing environment, not the display environment (see DISPENV). The entire
drawing environment may be changed using this primitive; see also the DR_MODE primitive, which sets a
subset of the drawing environment.

See also
SetDrawEnv(), PutDrawEnv()

Run-Time Library Reference

Basic Graphics Library Structures 7-9

DR_LOAD

Load Image primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.4 12/14/98

Structure

typedef struct {
u_long “tag; Pointer to next primitive (reserved)
u_long code[3]; Primitive ID
u_long p[13]; Transfer data
} DR_LOAD;
Explanation
Transfers data below array p to the frame buffer. As with Loadlmage(), semitransparent/ transparent color
control is not performed. Also, there is no dependence on the drawing environment.

Maximum data transfer amount is 12 words (24 pixels).

See also
Loadlmage(), SetDrawlLoad()

Run-Time Library Reference

7-10 Basic Graphics Library Structures

DR_MODE
Drawing mode modification primitive.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98
Structure
typedef struct {
u_long *tag; Pointer to the next primitive in primitive list
u_long code[2]; New drawing environment information as specified by
SetDrawMode()
} DR_MODE;
Explanation

Changes the texture page, texture window, dithering flag, and drawing flag parameters of the current
drawing environment while a primitive list is being drawn. See the tpage, tw, dtd, and dfe members of the
DRAWENV structure for more information. Use SetDrawMode() to specify the parameters to be used.

See also
SetDrawMode(), GetDrawMode()

Run-Time Library Reference

DR_MOVE

Rectangle copy primitive.

Basic Graphics Library Structures 7-11

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.2 12/14/98
Structure
typedef struct {
u_long tag;, Hook to the next primitive (reserved)
u_long code[5]; Primitive 1D
} DR_MOVE;
Explanation

Copies a rectangle. Speed is the same as Movelmage().

Unlike the 16-bit SPRT primitive, semitransparent/transparent color control is not carried out. Also, transfer

does not depend on the drawing environment.

See also
Movelmage(), Movelmage2(), SetDrawMove()

Run-Time Library Reference

7-12 Basic Graphics Library Structures

DR_OFFSET

Drawing offset modification primitive.

Library Header File Introduced Documentation Date

libgpu.lib libgpu.h 3.0 12/14/98

Structure

typedef struct {

u_long *tag; Pointer to the next primitive in primitive list

u_long code[2]; New drawing offset information specified by SetDrawOffset()
} DR_OFFSET;

Explanation

Changes the drawing offset parameters of the current drawing environment while a primitive list is being
drawn. See the ofs member of the DRAWENYV structure for more information. Use SetDrawOffset() to
specify the parameters to be used.

See also
GetDrawOffset(), SetDrawOffset ()

Run-Time Library Reference

Basic Graphics Library Structures 7-13

DR_STP
STP bit updated primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.1 12/14/98

Structure
typedef struct DR_STP {
u_long tag;, Pointer to the next primitive in primitive list (reserved)
u_long code[2]; Primitive 1D
} DR_STP;
Explanation
Updates the STP bit during drawing. Use SetDrawStp() to set the contents of this primitive.

See also
SetDrawStp()

Run-Time Library Reference

7-14 Basic Graphics Library Structures

DR_TPAGE
Texture page change primitive.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.5 12/14/98
Structure
typedef struct {
u_long *tag; Pointer to the next primitive in primitive list
u_long code[2]; New texture page information specified by SetDrawTPage()
} DR_TPAGE;
Explanation

Changes the texture page parameter of the current drawing environment while a primitive list is being
drawn. See the tpage member of the DRAWENV structure for more information. Use SetDrawTPage() to
specify the parameters to be used.

See also
SetDrawTPage()

Run-Time Library Reference

Basic Graphics Library Structures

DR_TWIN
Texture window change primitives.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98
Structure
typedef struct {
u_long *tag; Pointer to the next primitive in primitive list
u_long code[2]; New texture window information specified by
SetDrawTexWindow()
} DR_TWIN;
Explanation

Changes the texture window of the current drawing environment while a primitive list is being drawn. See
the tw member of the DRAWENYV structure for more information. Use SetTexWindow() to specify the
parameters to be used.

See also
GetTexWindow(), SetTexWindow()

Run-Time Library Reference

7-16 Basic Graphics Library Structures

LINE_F2, LINE_F3, LINE_F4

One flat-shaded non-connecting line/ Two flat-shaded connected lines/ Three flat-shaded connected lines.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure
struct LINE_F2 {
u_long “tag; Pointer to the next primitive (reserved)
u_char rO, g0, bO; RGB color specifed by straight line
u_char code; Primitive ID
short x0, yO, x1, y1; Coordinate of vertices forming straight lines
5
struct LINE_F3 {
u_long “tag; Pointer to the next primitive (reserved)
u_char rO, go, bo; RGB color specifed by straight line
u_char code; Primitive ID
short x0, yO, x1, y1, x2, y2; Coordinate of vertices forming straight lines
u_long pad; Reserved

struct LINE_F4 {

u_long *tag;

u_char rO, go, bO;

u_char code;

short x0, y0, x1, y1, x2, y2, x3,
¥3;

u_long pad;
b
Explanation

Pointer to the next primitive (reserved)

RGB color specifed by straight line
Primitive 1D

Coordinate of vertices forming straight lines

Reserved

LINE_F2 draws a non-connecting line linking (x0, y0) - (x1, y1) with the RGB color specifed by (0, g0, b0).

LINE_F3 draws 2 connecting lines linking (x0, y0) - (x1, y7) - (x2, y2) with the RGB color specifed by (r0, g0,

bO0).

LINE_F4 draws 3 connecting lines linking (x0, y0) - (x7, y1) - (x2, y2) - (x3, y3), with the RGB color specifed

by (r0, g0, b0).

See also
SetlLineF2()

Run-Time Library Reference

Basic Graphics Library Structures 7-17

LINE_G2, LINE_G3, LINE_G4

One Gouraud-shaded non-connecting line/ Two Gouraud-shaded connected lines/ Three Gouraud-shaded

connected lines

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure

struct LINE_G2 {
u_long “tag; Pointer to the next primitive
u_char rO, go, bO; RGB color values
u_char code; Primitive ID (reserved)
short x0, yO;, Vertex coordinates
u_charri, g1, b1; RGB color values
u_charp7, Primitive ID (reserved)
short x7, y1; Vertex coordinates

b

struct LINE_GS3 {
u_long *tag; Pointer to the next primitive
u_char r0, g0, bO; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_charri, g1, b1, RGB color values
u_char p7; Primitive ID (reserved)
short x7, y1; Vertex coordinates
u_charr2, g2, b2; RGB color values
u_char p2; Primitive ID (reserved)
short x2, y2; Vertex coordinates
u_long pad; Reserved

b

struct LINE_G4 {
u_long *tag; Pointer to the next primitive
u_char r0, g0, bO; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_charri, g1, b1; RGB color values
u_charp7, Primitive ID (reserved)
short x7, y1; Vertex coordinates
u_charr2, g2, b2; RGB color values
u_char p2; Primitive ID (reserved)
short x2, y2; Vertex coordinates
u_char r3, g3, b3; RGB color values
u_char p3; Primitive ID (reserved)
short x3, y3; Vertex coordinates
u_long pad; Reserved

5

Explanation

LINE_G2 draws a non-connecting line linking (x0, yO0) - (x7, y1) in such a way that its vertices have the RGB
color specified by (0, g0, b0) - (r1, g1, b1), and perform Gouraud shading at the same time.

LINE_GS draws connecting lines linking (x0, y0) - (x7, y7)- (x2, y2) in such a way that their vertices have the
RGB color specified by (r0, g0, b0) - (r1, g1, b1) - (r2, g2, b2), and perform Gouraud shading at the same

time.

Run-Time Library Reference

7-18 Basic Graphics Library Structures

LINE_G4 draws connecting lines linking (x0, y0) - (x1, y1)- (x2, y2) - (x3, y3) in such a way that their vertices
have the RGB color specified by (r0, g0, b0) - (r1, g1, b1) - (r2, g2, b2) - (r3, g3, b3) and perform Gouraud
shading at the same time.

See also
SetLineF2()

Run-Time Library Reference

Basic Graphics Library Structures 7-19

POLY_F3, POLY_F4

Flat-shaded, non-textured mapped triangel/ Flat-shaded, not-textured mapped quad.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.X 12/14/98

Structure

struct POLY _F3{
u_long “tag; Pointer to the next primitive
u_char r0, g0, bO; RGB color values
u_char code; Primitive ID (reserved)
short x0, yO;, Vertex coordinates
short x7, y1; Vertex coordinates
short x2, y2; Vertex coordinates

b

struct POLY_F4 {
u_long “tag; Pointer to the next primitive
u_char r0, g0, bO; RGB color values
u_char code; Primitive ID (reserved)
short x0, yO;, Vertex coordinates
short x7, y1; Vertex coordinates
short x2, y2; Vertex coordinates
short x3, y3; Vertex coordinates

5

Explanation

POLY_F3 paints the area demarcated by (x0, y0) - (x7, y7) - (x2, y2) using RGB color specified by (ro, g0,
b0).

POLY_F4 paints the area demarcated by (x0, y0) - (x7, y7) - (x3, y3) - (x2, y2) using RGB color specified by
(ro, g0, bO0).

The address where a picture is actually drawn is equivalent to the value of x0-x3 to which the offset value
specified by the drawing environment is added. What is drawn is clipped according to the clip area
(quadrilateral area) specified by the drawing environment.

If the polygon has a width greater than 1024 and a height greater than 512, all of it is clipped. In the case of
a quadrilateral primitive, the corners are specified in the order shown below.

Figure 7-1
(x0,y0) x1,y1)
x2,y2) x3,y3)
See also
SetPolyF3()

Run-Time Library Reference

7-20 Basic Graphics Library Structures

POLY_FT3, POLY_FT4

Flat-shaded, texture-mapped triangle/ Flat-shaded, texture-mapped quad.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure

struct POLY_FT3 {

o

u_long “tag; Pointer to the next primitive

u_char rO, go, bO; RGB color values

u_char code; Primitive ID (reserved)

short x0, yO;, Vertex coordinates

u_char u0, vO; Texture coordinates

u_short clut; CLUT ID (color-look-up table for 4-bit/8-bit mode only)
short x7, y1; Vertex coordinates

u_charut, vi;
u_short tpage;

Texture coordinates
Texture page ID

short x2, y2; Vertex coordinates
u_char u2, v2; Texture coordinates
u_short padi; Reserved by the system

struct POLY_FT4 {

u_long *tag; Pointer to the next primitive

u_char r0, g0, bO; RGB color values

u_char code; Primitive ID (reserved)

short x0, yO;, Vertex coordinates

u_char u0, vO; Texture coordinates

u_short clut; CLUT ID (color-look-up table for 4-bit/8-bit mode only)
short x7, y1; Vertex coordinates

u_charut, vi;
u_short tpage,

Texture coordinates
Texture page ID

short x2, y2; Vertex coordinates
u_char u2, v2; Texture coordinates
u_short padi; Reserved by the system
short x3, y3; Vertex coordinates
u_char u3, v3; Texture coordinates
u_short pad2; Reserved by the system

5

Explanation

POLY_FT3 draws an area demarcated by (x0, y0) - (x1, y1) - (x2, y2) while mapping the area demarcated
by (U0, vO) - (ut, v1) - (U2, v2) in the texture pattern on the texture page tpage.

POLY_FT4 draws an area demarcated by (x0, y0) - (x1, y1) - (x3, y3) - (x2, y2) while mapping the area
demarcated by (U0, vO) - (u?, v1) - (U3, v3) - (U2, v2) in the texture pattern on the texture page tpage.

The actual brightness value for drawn graphics are obtained by multiplying the RGB color values from the
texture pattern by the RGB color values given by r0, g0, b0.

The texture coordinates are the coordinates (0 to 255) inside the texture page corresponding to the vertices
of the triangle to be drawn. if the texture mode is 4-bit or 8-bit, the texture coordinates and the actual frame
buffer address are not 1-to-1.

Texture page ID is given to tpage. Using GetTPage(), the texture page ID is obtained from the address (x, y)
of the buffer frame where the texture page is located.

A texture using CLUT gives CLUT ID to be set in clut. Using GetClut(), CLUT ID is obtained from the
address (x, y) of the frame buffer where CLUT is located.

Run-Time Library Reference

Basic Graphics Library Structures 7-21

The size of the texture page which can be used by one drawing command is 256 x 256. One primitive can
only use one texture page.

In the case of a quadrilateral primitive, the corners are specified in the order shown below. The same
applies to designation of (u, v) for a texture map rectangle, and (r, g, b) for a Gouraud shaded rectangle.

Figure 7-2
(x0,y0) (x1,y1)

x2,y2) x3,y3)

See also
GetTPage(), GetClut(), SetPolyF3()

Run-Time Library Reference

7-22 Basic Graphics Library Structures

POLY_G3, POLY_G4

Gouraud-shaded, non-textured mapped triangle/ Gouraud-shaded, non-textured mapped quad.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure
struct POLY_G3{
u_long “tag; Pointer to the next primitive
u_char rO, go, bO; RGB color values
u_char code; Primitive ID (reserved)
short x0, yO;, Vertex coordinates
u_charri, g1, b1; RGB color values
u_char pad7; Reserved by the system
short x7, y1; Vertex coordinates
u_charr2, g2, b2; RGB color values
u_char padz; Reserved by the system
short x2, y2; Vertex coordinates
5

struct POLY_G4 {

u_long “tag; Pointer to the next primitive
u_char r0, g0, bO; RGB color values
u_char code; Primitive ID (reserved)
short x0, yO;, Vertex coordinates
u_charri, g1, bi; RGB color values
u_char pad7; Reserved by the system
short x7, y1; Vertex coordinates
u_charr2, g2, b2; RGB color values
u_char padz; Reserved by the system
short x2, y2; Vertex coordinates
u_charr3, g3, b3; RGB color values
u_char pad3; Reserved by the system
short x3, y3; Vertex coordinates

b

Explanation

When drawing while performing Gouraud shading, POLY_G3 paints the area demarcated by (x0, y0) - (x7,
y1) - (x2, y2) so that vertex RGB color value may be set to (r0, g0, bO0) - (r1, g1, b1) - (r2, g2, b2).

When drawing while performing Gouraud shading, POLY_G4 paints the area demarcated by (x0, y0) - (x7,
y1) - (x3, ¥3) - (x2, y2) so that vertex RGB color value may be set to (0, g0, b0) - (r1, g7, b1) - (r3, g3, b3) -
(r2, g2, b2).

The brightness of triangle-internal pixels is calculated by performing linear interpolation of the RGB color
values of the three vertices. (Gouraud shading).

See also
SetPolyF3()

Run-Time Library Reference

Basic Graphics Library Structures 7-23

POLY_GT3, POLY_GT4

Gouraud-shaded, texture-mapped triangle/ Gouraud-shaded, texture-mapped quad.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure

struct POLY_GT3 {

b

u_long “tag;

u_char rO, go, bO;

u_char code;
short x0, yO;
u_char u0, vO;
u_short clut;

u_charri, g1, b1;

u_charp?,
short x7, y1;
u_charut, vi;
u_short tpage,

u_charr2, g2, b2;

u_char p2;
short x2, y2;
u_charu2, v2;
u_short pad?;

struct POLY_GT4 {

b

u_long “tag;

u_char r0, g0, b0;

u_char code;
short x0, yO;
u_char u0, vO;
u_short clut;

u_charri, g1, b1;

u_charpi;
short x7, y1;
u_charut, vi;
u_short tpage,

u_charr2, g2, b2;

u_char p2;
short x2, y2;
u_charu2, v2;
u_short pad2;

u_charr3, g3, b3;

u_char p3;
short x3, y3;
u_char u3, v3;
u_short pad3;

Explanation
POLY_GTS3 draws a triangle performing texture mapping and Gouraud shading simultaneously.

Pointer to the next primitive
RGB color values

Primitive ID (reserved)
Vertex coordinates

Texture coordinates

CLUT ID (color-look-up table for 4-bit/8-bit mode only)
RGB color values

Reserved

Vertex coordinates

Texture coordinates
Texture page ID

RGB color values

Reserved

Vertex coordinates

Texture coordinates
Reserved by the system

Pointer to the next primitive
RGB color values
Primitive ID (reserved)
Vertex coordinates
Texture coordinates
CLUT ID (color-look-up table for 4-bit/8-bit mode only)
RGB color values
Primitive ID (reserved)
Vertex coordinates
Texture coordinates
Texture page ID

RGB color values
Primitive ID (reserved)
Vertex coordinates
Texture coordinates
Reserved by the system
RGB color values
Primitive ID (reserved)
Vertex coordinates
Texture coordinates
Reserved by the system

POLY_GT4 draws a quadrilateral performing texture mapping and Gouraud shading simultaneously.

The actual RGB color values for the picture are equal to the RGB color values obtained from the texture
pattern multiplied by the RGB color values calculated by Gouraud shading.

Run-Time Library Reference

7-24 Basic Graphics Library Structures

See also
SetPolyF3()

Run-Time Library Reference

Basic Graphics Library Structures

RECT
Frame buffer rectangular area.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure
struct RECT {
short x, y; Top left coordinates of the rectangular area
short w, h; Width and height of the rectangular area
b
Explanation

Used by several library functions to specify a rectangular area of the frame buffer. Neither negative values,
nor values exceeding the size of the frame buffer (1024x512), may be specified.

See also
Clearlmage(), Loadlmage(), Movelmage(), Storelmage(), dumpRECT(), setRECT()

Run-Time Library Reference

7-25

7-26 Basic Graphics Library Structures

RECT32

Rectangular area (32 bit)

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Structure

typedef struct {

intx, y; Top left coordinates of the rectangular area
int w, h; Width and height of the rectangular area
} RECT32;

Explanation

Used by several library functions to specify a rectangular area of the frame buffer. Neither negative values,
nor values exceeding the size of the frame buffer (1024x512) may be specified.

Run-Time Library Reference

Basic Graphics Library Structures 7-27

SPRT
Sprite of any desired size.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure
struct SPRT {
u_long “tag; Pointer to next primitive (reserved)
u_char r0, g0, bO; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, yO;, Position of sprite (top left coordinate)
u_char u0, vO; Position of sprite texture within the texture page (top left coordinate). u0
should be an even number.
u_short clut; CLUT ID used (for 4-bit/8-bit mode only)
short w, h; Width and height of sprite. w is an even number
b
Explanation

Draws a texture-mapped rectangular area. Drawing speed for a SPRT primitive is faster than for a
POLY_FT4.

Only even numbers can be specified for u0 and w.

Because the SPRT primitive has no tpage parameter, the texture page of the current drawing environment
is used. You can change the texture page by inserting a DR_TPAGE or DR_MODE primitive into the
primitive list before your SPRT primitive.

See also
SetSprt()

Run-Time Library Reference

7-28 Basic Graphics Library Structures

SPRT_8, SPRT_16

8 x 8 fixed size, texture-mapped sprite / 16 x 16 fixed size, texture-mapped sprite.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure
struct SPRT_16 {
u_long “tag; Pointer to next primitive (reserved)
u_char r0, g0, bO; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, yO;, Position of sprite (top left coordinate)
u_char u0, vO; Position of sprite texture within the texture page (top left coordinate). u0
should be an even number.
u_short clut; CLUT ID used (for 4-bit/8-bit mode only)
b
struct SPRT_8 {
u_long “tag; Pointer to next primitive (reserved)
u_char r0, g0, bO; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, yO; Position of sprite (top left coordinate)
u_char u0, vO; Position of sprite texture within the texture page (top left coordinate). u0
should be an even number.
u_short clut; CLUT ID used (for 4-bit/8-bit mode only)
5
Explanation

Draws a sprite with a fixed size of 8 x 8 or 16 x 16. The same result can be obtained if 8 and 16 are
designated as the w and h members of the SPRT structure.

See also
SetSprt()

Run-Time Library Reference

TILE

Tile of any desired size.

Basic Graphics Library Structures 7-29

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure
struct TILE {
u_long “tag; Pointer to next primitive (reserved)
u_char r0, g0, bO; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, yO;, Position of sprite (top left coordinate)
short w, h; Width and height of sprite. w is an even number
5
Explanation

Draws a rectangular area with the specified RGB color value (r0, g0, b0). No texture mapping or shading is
done. It is faster than the POLY_F4 primitive.

See also
SetTile()

Run-Time Library Reference

7-30 Basic Graphics Library Structures

TILE_1, TILE_8, TILE_16

1 x 1 fixed-size tile sprite / 8 x 8 fixed-size tile sprite / 16 x 16 fixed-size tile sprite.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.X 12/14/98
Structure
struct TILE_16 {
u_long “tag; Pointer to next primitive (reserved)
u_char r0, g0, bO; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, yO;, Position of sprite (top left coordinate)
b

struct TILE_8 {
u_long *tag;
u_char r0, g0, bO;
u_char code;
short x0, yO;

b

struct TILE_1 {

u_long *tag;
u_char r0, g0, b0;
u_char code;
short x0, yO;

5

Explanation

Fixed-size versions of the TILE primitive. The rectangular area is drawn with the specified RGB color value

Pointer to next primitive (reserved)
RGB color values for sprite

Primitive code (reserved)

Position of sprite (top left coordinate)

Pointer to next primitive (reserved)
RGB color values for sprite

Primitive code (reserved)

Position of sprite (top left coordinate)

(r0, 90, b0). No texture mapping or shading is done. These are faster than the POLY_F4 primitive.

See also
SetTile()

Run-Time Library Reference

Basic Graphics Library Structures

TIM_IMAGE
TIM format image data header.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure
typedef struct {
u_long mode; Pixel mode
RECT *crect; Pointer to destination rectangle in VRAM for CLUT data
u_long “caddr; Pointer to address of CLUT data in main memory
RECT *prect; Pointer to destination rectangle in VRAM for texture image data
u_long “paddr; Pointer to address of texture image data in main memory
} TIM_IMAGE;
Explanation

TIM data header information is acquired by ReadTIM().

crect and caddr are assigned a value of zero for TIM having no CLUT.

See also
ReadTIM()

Run-Time Library Reference

7-31

7-32 Basic Graphics Library Structures

TMD_PRIM

TMD format model data header.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Structure
typedef struct {
u_long id; TMD primitive 1D

u_char rO, g0, b0, pO;
u_charri, g1, b1, p1;
u_charr2, g2, b2, p2;
u_charr3, g3, b3, p3;
u_short tpage;

u_short clut;

u_char u0, vO, ut, vi;
u_char u2, v2, u3, v3;
SVECTOR X0, x1, x2, x3;

SVECTOR nO, n1, n2, n3;

SVECTOR *v_ofs;

SVECTOR *n_ofs;

u_short vertO, verti;

u_short vert2, vert3;

u_short normO, norm1;

u_short norm2, norm3;
} TMD_PRIM;

Explanation

RGB color values of vertex 1
RGB color values of vertex 2
RGB color values of vertex 3
RGB color values of vertex 4
Texture page ID

CLUT ID

Texture vertex coordinates
Texture vertex coordinates
Three-dimensional coordinates

Normal coordinates

Pointer to start coordinates of a vertex array
Pointer to start coordinates of a normal array
Offset to vertex array

Offset to vertex array

Offset to normal array

Offset to normal array

1-byte pad)
1-byte pad)
1-byte pad)
1-byte pad)

TTTT

Information on primitives constituting a TMD object. The information is acquired using ReadTMD(). x0, x7,
X3, n0, n1,n3 are used for an independent vertex model. v_ofs, n_ofs and vert0,..vert3, norm0...norm3 are

used for a common vertex model.

Some members have no meaning depending on the TMD primitive type.

See also
ReadTMD()

Run-Time Library Reference

Basic Graphics Library Functions 7-33

Functions

AddPrim, addPrim
Register a primitive to the OT.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void AddPrim (

void *ot OT entry

void p) Start address of primitive to be registered

AddPrim(ot, p) Macro version of AddPrim()

Explanation

Registers a primitive beginning with the address *p to the OT entry *ot in OT table. ot is an ordering table or
pointer to another primitive.

A primitive may be added to a primitive list only once in the same frame. Attempting to add it multiple times
in the same frame results in a corrupted list.

See also
AddPrims(), CatPrim()

Run-Time Library Reference

7-34 Basic Graphics Library Functions

AddPrims, addPrims

Collectively register primitives to the OT.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void AddPrims(

void *ot, OT entry

void *p0, Start address of primitive list

void *p7) End address of primitive list

AddPrims(ot, p0O, p1) Macro version of AddPrims

Explanation
Registers primitives beginning with p0 and ending with p7 to the *ot entry in the OT.

The primitive list is a list of primitives connected by AddPrim() or created by the local ordering table.

See also
AddPrim()

Run-Time Library Reference

Basic Graphics Library Functions 7-35

BreakDraw

Interrupt drawing.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.4 12/14/98

Syntax

u_long *BreakDraw(void)

Explanation

Interrupts drawing after the current polygon is drawn. The return value is the next drawing entry; to resume
drawing, pass this value to DrawOTag().

Return value
Next polygon drawing entry.

However, during a DMA transfer outside the OT (such as Loadlmage(), etc.) Oxffffffff is returned.

See also
ContinueDraw(), DrawQOTag(), IsldleGPU()

Run-Time Library Reference

7-36 Basic Graphics Library Functions

CatPrim, catPrim
Concatenate primitives.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void CatPrim(

void *p0, void *p7) Starting addresses of primitives to be concatenated

catPrim(o0, p7) Macro version of CatPrim()

Explanation

Links the primitive p7 to the primitive p0.

AddPrim() adds a primitive to a primitive list. CatPrim() simply concatenates two primitives.

Return value
Start address of p0.

See also
AddPrim()

Run-Time Library Reference

Basic Graphics Library Functions 7-37

CheckPrim

Check validity of a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

long CheckPrim(

char *s, Pointer to optimal character string
u_long *p) Pointer to primitive

Explanation

Checks the validity of the primitive. If the primitive is found to be invalid, a message is printed with the
contents of s followed by the type code and length of the primitive. The primitive is not modified in any
case.

Return value
0 for a valid primitive; -1 for an invalid primitive.

Run-Time Library Reference

7-38 Basic Graphics Library Functions

Clearimage
Clear Frame Buffer at high speed.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 9/1/99

Syntax

int Clearimage(

RECT *rect, Pointer to rectangular area to be cleared
u_charr, u_char g, u_charb) Pixel values to be used for clearing
Explanation

Sets the rectangular area rect in the Frame Buffer to RGB color values (r, g, b).

Because this is a non-blocking function, the end of the operation must be detected using DrawSync() or by
installing a callback with DrawSyncCallback(). The drawing area is not affected by the drawing environment
(clip/offset).

When the width and height of the rectangular area exceeds (w,h)=(1024,512), only the (w,h)=(1023,511)
area is cleared.

When in interlace mode, use Clearimage?() instead.

Return value
Position of this command in the libgpu command queue.

See also
Clearlmage2(), DrawSync(),DrawSyncCallbacki()

Run-Time Library Reference

Basic Graphics Library Functions 7-39

Clearlmage2

Clear Frame Buffer at high speed (interlace mode).
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 9/1/99

Syntax

int Clearimage?2(

RECT *rect, Pointer to rectangular area to be cleared

u_charr, u_char g, u_charb) Pixel values to be used for clearing

Explanation

Sets the rectangular area rect in the Frame Buffer to RGB color values (r, g, b).

Although Clearlmage() only clears one field when in interlace mode, Clearlmage?2() clears both fields.
However, the DRAWENV.dfe flag will remain high upon completion of this command. This allows drawing

to both visible and non-visible scan lines. Therefore, after using this function in interlace mode,
DRAWENV.dfe should be set to 0 to avoid drawing to both fields.

Because this is a non-blocking function, the end of the operation must be detected using DrawSync() or by
installing a callback routine with DrawSyncCallback(). The drawing area is not affected by the drawing
environment (clip/offset).

When the width and height of the rectangular area exceeds (w,h)=(1024,512), only the (w,h)=(1023,511)
area is cleared.

Return value
Position of this command in the libgpu command queue.

See also
Clearlmage(), DrawSync(),DrawSyncCallback()

Run-Time Library Reference

7-40 Basic Graphics Library Functions

ClearOTag

Initialize an array to a linked list for use as an ordering table.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

u_long *ClearOTag(

u_long "of, OT starting pointer

int n) Number of entries in OT

Explanation

Walks the array specified by ot and sets each element to be a pointer to the following element, except the
last, which is set to a pointer to a special terminator value which the PlayStation® uses to recognize the
end of a primitive list. n specifies the number entries in the array.

To execute the OT initialized by ClearOTag(), call DrawQOTag(ot).

See also
DrawQTag(), ClearOTagR()

Run-Time Library Reference

Basic Graphics Library Functions 7-41

ClearOTagR

Initialize an array to a linked list for use as an ordering table.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void ClearOTagR(

u_long "of, Head pointer of OT

long n) Number of entries in OT

Explanation

Walks the array specified by ot and sets each element to be a pointer to the previous element, except the
first, which is set to a pointer to a special terminator value which the PlayStation uses to recognize the end
of a primitive list. n specifies how many entries are present in the array.

To execute the OT initialized by ClearOTagR(), execute DrawOTag(ot+n-1).

See also
DrawQTag(), ClearOTag()

Run-Time Library Reference

7-42 Basic Graphics Library Functions

ContinueDraw

Continue to draw the OT interrupted by BreakDraw()
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void ContinueDraw(

u_long “inst_ot, Address of interrupting OT

u_long “cont_ot) Address of drawn OT immediately after drawing inst_ot

Explanation

Immediately executes the OT supplied by inst_ot without entering it in the libgpu queue. When the drawing
of inst_ot is completed, it then draws cont_ot. Since the GPU must be in an immediately executable state,
ContinueDraw() must be used in combination with routines such as BreakDraw().

This function is used when you wish to draw a specific OT with certain timing and high priority. In such
cases, this can be achieved by using BreakDraw() to interrupt the OT being drawn and by executing the
return value as cont_ot.

See also
BreakDraw()

Run-Time Library Reference

Basic Graphics Library Functions 7-43

DrawOTag

Execute a list of GPU primitives.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax

void DrawOTag(

u_long *ot) Pointer to a linked list of GPU primitives

Explanation

Executes the GPU primitives in the linked list ot.

DrawOTag() is non-blocking. To detect when execution of the primitive list is complete, use DrawSync() or
install a callback routine with DrawSyncCallback().

See also
DrawSync(), DrawSyncCallback()

Run-Time Library Reference

7-44 Basic Graphics Library Functions

DrawOTag2

Execute a list of GPU primitives (immediate execution).
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.1 12/14/98

Syntax

int DrawOTag2(

u_long *p) Pointer to a linked list of GPU primitives

Explanation

Executes the GPU primitives in the linked list p. This operation takes place immediately, regardless of what
is in the GPU queue, and on completion, processing of the queue is resumed.

When drawing has been suspended using BreakDraw() and you want to execute a linked list of GPU
primitives using DrawQOTag(), immediate execution is not possible because of the need for queueing. If
immediate execution is desired, you must use DrawOTag2().

When drawing is suspended with BreakDraw() after DrawOTag?2() is called, before restarting the drawing
with ContinueDraw(), it is necessary to confirm the completion of data transfer using IsldleGPU(). This is
because DrawQOTag2() is a non-blocking function.

Return value
0: Normal completion; -1: Abnormal completion.

See also
BreakDraw(), ContinueDraw(), IsldleGPU(), DrawOTag()

Run-Time Library Reference

Basic Graphics Library Functions

DrawOTagEnv

Set the drawing environment and draw the primitives registered in the OT.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax

void DrawOTagEnv(

u_long “p, OT start pointer

DRAWENV “env) Drawing environment

Explanation

Sets drawing environment parameters and executes the primitives registered in the OT.

The drawing environment specified by DrawOTagEnv() is effective until PutDrawEnv(), DrawOTagEnv() or
the DR_ENV primitive are executed.

To detect when execution of the primitive list is complete, use DrawSync() or install a callback routine with
DrawSyncCallback).

See also
PutDrawEnv(), DrawOTagEnv(),DrawSync(), DrawSyncCallback()

Run-Time Library Reference

7-45

7-46 Basic Graphics Library Functions

DrawOTagIlO

Draw the primitives registered in the OT
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax

void DrawOTaglO(

u_long *p) Pointer to top of OT

Explanation

Collectively executes the primitives registered in the OT. It is the same as DrawOTag(), except that it uses
CPU I/0 instead of DMA, which results in a significant speed decrease.

See also
DrawOTag()

Run-Time Library Reference

Basic Graphics Library Functions 7-47

DrawPrim
Draw a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void DrawPrim(
void *p) Pointer to primitive

Explanation

Executes a primitive which has completed initialization. This routine blocks while waiting for all drawing
commands in the queue to complete, then executes immediately.

See also
DrawOTag()

Run-Time Library Reference

7-48 Basic Graphics Library Functions

DrawSync

Wait for all drawing to terminate.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

long DrawSync(

long mode) 0: Wait for termination of all non-blocking functions registered in the queue

1: Return the number of positions in the current queue

Explanation

Waits for drawing to terminate.

If DrawSync(0) is used, and execution of the primitive list takes an exceptionally long time (approximately
longer than 8 Vsync) to complete, a timeout is generated and the GPU is reset. Reasons why this might
occur include an exceptionally long primitive list, or one that renders exceptionally large numbers of pixels.

Another possibility is that the primitive list has been corrupted in some way. To avoid this, the application
can use a loop such as:

whi | e(DrawSync(1));

The following routines use the GPU queue, and therefore their termination can be detected using
DrawSync(), or by setting a callback with DrawSyncCallback(): Clearimage(), Clearlmage2(), DrawOTag(),
DrawQOTagEnv(), Loadlmage(), Movelmage(), PutDrawEnv(), Storelmage().

Return value
Number of positions in the execution queue.

See also
DrawSyncCallback()

Run-Time Library Reference

Basic Graphics Library Functions 7-49

DrawSyncCallback

Define a callback function to be called when the GPU is finished executing a primitive list.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 2/24/99

Syntax

u_long DrawSyncCallback(

void (*func)()) Pointer to callback function

Explanation

Defines a routine to be used as a callback when drawing is completed. When all requests in the queue
have terminated, the function func is called. If func is set to O, then any previous callback routine is
disabled.

Inside the callback, subsequent drawing termination interrupts are masked. Therefore, the callback routine
should return as soon as possible. Although the specified function is called during an interrupt, it is not an
interrupt handler; it should be written as a normal subroutine that is called by the main interrupt handler.

The following routines use the GPU queue, and therefore their termination can be detected using
DrawSync(), or by setting a callback with DrawSyncCallback(): Clearlmage(), Clearimage2(), DrawQOTag(),
DrawOTagEnv(), Loadlmage(), Movelmage(), PutDrawEnv(), Storelmage().

It is important to note that the callback is called when the GPU queue is empty. If a particular set of
drawing commands has terminated, but new commands have already been placed in the queue, the
callback isn’t called until all the commands have terminated.

Return Value
Pointer to the previously registered callback function.

See also
DrawSync()

Run-Time Library Reference

7-50 Basic Graphics Library Functions

DumpClut, dumpClut

Print contents of clut member of primitive.

Library Header File Introduced Documentation Date

libgpu.lib libgpu.h 2.X 12/14/98

Syntax

void DumpClut(
u_short clut) CLUT ID

DumpClut(ciut) Macro version of DumpClut().

Explanation
Prints the CLUT contents.

See also
GetClut(), LoadClut()

Run-Time Library Reference

DumpDispEnv

Print contents of display environment Structure.

Basic Graphics Library Functions 7-51

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void DumpDispEnv(

DISPENYV *env) Pointer to display environment

Explanation

Prints the contents of the display environment structure.

Run-Time Library Reference

7-52 Basic Graphics Library Functions

DumpDrawEnv

Print contents of drawing environment structure.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void DumpDrawEnv(

DRAWENV “env) Pointer to drawing environment

Explanation

Prints the contents of the drawing environment structure.

See also
SetDrawEnv()

Run-Time Library Reference

DumpOTag

Print primitives registered in the OT.

Basic Graphics Library Functions 7-53

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void DumpOTag(

u_long “ot) OT starting pointer

Explanation

Prints the code fields of the primitives registered in the OT.

See also
DrawOTag()

Run-Time Library Reference

7-54 Basic Graphics Library Functions

DumpTPage, dumpTPage

Print contents of tpage member of primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void DumpTPage(

u_short tpage) Texture page ID

DumpTPage(tpage) Macro version of DumpTPage().

Explanation

Prints the contents of the texture page ID.

See also
setTPage()

Run-Time Library Reference

Basic Graphics Library Functions 7-55

FntFlush

Draw contents of print stream.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

u_long *FntFlush(

long id) Print stream ID

Explanation

Draws the contents of the print stream into the frame buffer. It initializes and then draws a sprite primitive
list corresponding to the characters specified in the print stream.

When id is -1, the print stream ID which was set in SetDumpFnt() is used (0 if print stream ID was not set).

After the drawing has been done, the print stream contents are also flushed.

Return value
The starting pointer of the primitive list used to perform the drawing.

See also
SetDumpFnt()

Run-Time Library Reference

7-56 Basic Graphics Library Functions

FntLoad

Transmit font pattern.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

void FntLoad(

long tx, long ty) Font pattern frame buffer address

Explanation

Transmits the built-in text font used for debugging text output to the frame buffer. It loads the basic font
pattern (4-bit, 256x128) and initializes all the print streams.

FntLoad() must always be executed before FntOpen() and FntFlush(). The font area must not clash with the
frame buffer area used by the application. Font data is located at the upper left of the texture page for
FntFlush(). Font data is treated as a RECT (0,0,32,32) area consisting of 128 characters, each 128 x 32. As
this is similar to the texture page area, tx is restricted to a multiple of 64 and ty is restricted to a multiple of
256.

Loads the Clut to location (tx, ty+128).

See also
FntOpen(), FntFlush(), SetDumpFnt()

Run-Time Library Reference

Basic Graphics Library Functions 7-57

FntOpen

Open a print stream.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 2/24/99

Syntax

long FntOpen(
long x, long y,
long w, long h,
long isbg,

long n)

Explanation

Display start location

Display area

Automatic clearing of background

0: Don’t clear background to (0, 0, 0) when display is performed
1: Clear background to (0, 0, 0) when display is performed
Maximum number of characters

Opens the stream for on-screen printing. After this, character strings up to n characters long can be drawn
in the (x, y)- (x+w, y+h) rectangular area of the frame buffer, using FntPrint(). If isbg is 1, the background is
cleared when a character string is drawn.

Up to 8 streams can be opened at once. However, once a stream is opened, it cannot be closed until the
next time FntLoad)() is called.

n specifies the maximum number of characters. Up to 1024 characters can be specified together in 8

streams.

Return value
The stream ID.

See also
FntLoad(), FntPrint()

Run-Time Library Reference

7-58 Basic Graphics Library Functions

FntPrint
Print a string.

Library Header File Introduced Documentation Date

libgpu.lib libgpu.h 2.X 12/14/98

Syntax

long FntPrint(
long id, Print stream 1D
char *format) Pointer to print format

Explanation

Sends the string format to the specified print stream using the same interface as the fprintf() standard C
library function.

The character string is not actually displayed until FntFlush() has been executed.

Return value
The number of characters in the stream.

See also
FntOpen(), FntFlush()

Run-Time Library Reference

GetClut, getClut

Calculate value of the CLUT member in a primitive.

Basic Graphics Library Functions 7-59

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

u_short GetClut(

int x, int y) Frame buffer address of CLUT

GetClut(x,) Macro version of getClut().

Explanation

Calculates and returns the texture CLUT ID.

The CLUT address is limited to multiples of 16 in the x direction.

Return value
CLUT ID.

See also
setClut()

Run-Time Library Reference

7-60 Basic Graphics Library Functions

GetDispEnv

Get current display environment.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

DISPENV *GetDispEnv(

DISPENYV *env) Pointer to display environment start address

Explanation

Stores the current display environment in the address specified by env.

Return value
A pointer to the display environment obtained by the function.

See also
PutDispEnv(), SetDefDispEnv()

Run-Time Library Reference

GetDrawArea
Get data for the current draw area.

Basic Graphics Library Functions 7-61

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax

void GetDrawArea(

DR_AREA *p) Starting address for DR_AREA primitive

Explanation

Reads GPU's current draw area settings into p.

p must be initialized beforehand using SetDrawArea().

See also
SetDrawArea()

Run-Time Library Reference

7-62 Basic Graphics Library Functions

GetDrawEnv

Get the current drawing environment.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

DRAWENYV *GetDrawEnv(

DRAWENYV *env) Pointer to drawing environment start address

Explanation

Stores the current drawing environment in the address specified by env.

Return value
env starting address

See also
PutDrawEnv(), SetDrawEnv(), GetDrawEnv2()

Run-Time Library Reference

Basic Graphics Library Functions 7-63

GetDrawEnv2

Get the current drawing environment.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.6 9/1/99

Syntax

DR_ENV *GetDrawEnv2(

DR_ENV p) Pointer to drawing environment change primitive

Explanation

Gets the current drawing environment from the GPU and sets the drawing environment change primitive.
The drawing environments that are obtained are as follows:

» DR_AREA (Drawing area)

» DR_OFFSET (Drawing offset)

» DR_TPAGE (Texture page)

* DR_TWIN (Texture window)

 DR_STP (STP bit processing)

Return value
None.

See also
PutDrawEnv(), SetDrawEnv(),GetDrawEnv()

Run-Time Library Reference

7-64 Basic Graphics Library Functions

GetDrawMode

Get current draw mode data
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax

void GetDrawMode(

DR_MODE *p) Starting address for DR_MODE primitives

Explanation

Reads GPU's current draw mode settings into p.

p must be initialized beforehand with SetDrawMode().

See also
SetDrawMode()

Run-Time Library Reference

Basic Graphics Library Functions 7-65

GetDrawOffset

Get the current draw offset.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax

void GetDrawOffset(
DR_OFFSET *p) Starting address for DR_OFFSET primitive

Explanation
Reads GPU's current draw offset settings into p.

p must be initialized beforehand with SetDrawOffset().

See also
SetDrawOffset()

Run-Time Library Reference

7-66 Basic Graphics Library Functions

GetGraphDebug

Get present debug level.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax

int GetGraphDebug(void)

Explanation
Gets graphics system debug level.

Return value
Present debug level value.

See also

Run-Time Library Reference

GetODE

Get field currently being drawn.

Basic Graphics Library Functions 7-67

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

int GetODE(void)

Explanation

Gets field currently being drawn.

Return value

Current drawing field:
0: VRAM even address being drawn
1: VRAM odd address being drawn

Run-Time Library Reference

7-68 Basic Graphics Library Functions

GetTexWindow

Get current texture window data.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax

void GetTexWindow(

DR_TWIN *p) Starting address for DR_TWIN primitives

Explanation

Reads GPU's current texture window settings into p.

p must be initialized beforehand with SetTexWindow().

See also
SetTexWindow()

Run-Time Library Reference

Basic Graphics Library Functions 7-69

GetTimSize

Calculate size of Tim data domain returned by Krom2Tim().
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax

int GetTimSize(

u_char *sjis) Pointer to sjis character string

Explanation

Calculates size of the Tim data domain returned by Krom2Tim(). This size domain is maintained in malloc()
and is designated Krom2Tim().

Return value
Size of Tim data domain returned by Krom2Tim().

See also
Krom2Tim()

Run-Time Library Reference

7-70 Basic Graphics Library Functions

GetTPage, getTPage

Calculate value of member tpage in a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98
Syntax
u_short GetTPage(
int tp, Texture mode
0: 4bitCLUT
1: 8bitCLUT
2: 16bitDirect
int abr, Semitransparency rate

0: 0.5 x Back + 0.5 x Forward

1: 1.0 x Back + 1.0 x Forward

2:1.0 x Back - 1.0 x Forward

3: 1.0 x Back + 0.25 x Forward
intx, inty) Texture page address

getTPage((ip, abr, X, y) Macro version of GetTPage().

Explanation

Calculates the texture page ID, and returns it.

The semitransparent rate is also effective for polygons on which texture mapping is not performed.
The texture page address is limited to a multiple of 64 in the X direction and a multiple of 256 in the Y
direction.

Return value
Texture page ID.

See also
setTPage(), DumpTPage()

Run-Time Library Reference

IsEndPrim, isendprim
Determine if a primitive is the last in a list.

Basic Graphics Library Functions 7-71

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax

int ISEndPrim(

void *p) Primitive start address

isendprim(p) Macro version of ISEndPrim().

Explanation

Decides if the end of the primitive list is p.

Return value
1: final end case; 0: non-final end case.

See also
AddPrim()

Run-Time Library Reference

7-72 Basic Graphics Library Functions

IsldleGPU

Check if drawing suspended by BreakDraw() was completed.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.6 12/14/98

Syntax

int IsldleGPU(

int maxcount) Count value

Explanation

Checks whether the GPU is idle.

When drawing is suspended by BreakDraw(), the GPU doesn’t stop until drawing of the current primitive is
completed. This function checks whether the drawing suspended by BreakDraw() has completed.
maxcount is the number of times the function will check for idle before returning.

Return value
0: GPU is in idle state. -1: GPU is in drawing state.

See also
BreakDraw()

Run-Time Library Reference

Basic Graphics Library Functions 7-73

KanjiFntClose
Close print streams.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98
Syntax

void KanijiFntClose(void)

Explanation

Closes all the streams currently open and are by KanjiFntPrint() and initializes the state of the Kaniji font
ruoutines. It will function correctly even when no streams are open.

See also
KanjiFntFlush(), KanjiFntOpen(), KanjiFntPrint()

Run-Time Library Reference

7-74 Basic Graphics Library Functions

KanjiFntFlush

Draw contents of a Kaniji print stream.
Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax

u_long *KanjiFntFlush(

int id) Print stream ID

Explanation

Draws the contents of the Kaniji print stream into the frame buffer. It initializes and then draws a sprite
primitive list corresponding to the characters specified in the print stream.

The contents of a print stream are also flushed after the end of drawing.

To internally reserve the transfer buffer on the stack, approximately 72K is needed.

Return value
Start poin